Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x+1)(x+3)-(x+2)(x-1)=-4
=>x^2+4x+3-x^2-x+2=-4
=>3x+5=-4
=>3x=-9
=>x=-3(loại)
\(\left(x-3\right)\left(x-4\right)=\left(x-5\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)-\left(x-5\right)^2=0\)
\(\Leftrightarrow x^2-4x-3x+12-\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow x^2-4x-3x+12-x^2+10x-25=0\)
\(\Rightarrow3x-13=0\)
\(\Rightarrow3x=13\)
\(\Rightarrow x=\frac{13}{3}\)
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\)
\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1\right)+2093\)
\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1+3\right)+2093\)
Đặt: \(a=x^2+4x+1\)
\(\Rightarrow P=a^2-12\left(a+3\right)+2093\)
\(P=a^2-12a-36+2093\)
\(P=a^2-12a+2057\)
\(P=a^2-12a+36+2021\)
\(P=\left(a^2-2\cdot6\cdot a+6^2\right)+2021\)
\(P=\left(a-6\right)^2+2021\)
Ta có: \(\left(a-6\right)^2\ge0\forall a\)
\(\Rightarrow P=\left(t-6\right)^2+2021\ge2021\)
\(\Rightarrow P\ge2021\Rightarrow P_{min}=2021\)
Dấu "=" xảy ra: \(\left(t-6\right)^2=0\Leftrightarrow t-6=0\Leftrightarrow t=6\)
Vậy: \(P_{min}=2021\) khi \(t=6\)
Mà: \(t=6\Rightarrow x^2+4x+1=6\)
\(\Leftrightarrow x^2+4x+1-6=0\)
\(\Leftrightarrow x^2+4x-5=0\)
\(\Leftrightarrow x^2-x+5x-5=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy: \(P_{min}=2021\) khi \(\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\\ P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+4\right)+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6-36+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6+36+2021\\ P=\left(x^2+4x-5\right)^2+2021\ge2021\)
Dấu "=" xảy ra tương đương với \(\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Đề bài: \(B=\frac{14x^2-8x+9}{3x^2+6x+9}\) Tìm GTNN của B lần sau bạn chụp
=> chụp mỗi cái đề thôi=> lớn dẽ nhìn.
\(3x^2+6x+9=3\left[\left(x-\frac{3}{2}\right)^2+3-\frac{9}{4}\right]\)>0 => B tồn tại với mọi x:
\(B=\frac{14\left(x^2+2x+3\right)-28x-14.3-8x+9}{3\left(x^2+2x+3\right)}=\frac{14\left(x^2+2x+3\right)-36x-33}{3\left(x^2+2x+3\right)}\)
\(B=\frac{14}{3}-\frac{12x+11}{\left[\left(x+1\right)^2+2\right]}=\frac{14}{3}-\frac{12\left(x+1\right)-1}{\left(x+1\right)^2+2}\)
xét : \(C=\frac{12y-1}{y^2+2}\)
B nhỏ nhất => C phải lớn nhất=> tìm GTLN của C
\(4-C=4-\frac{12y-1}{y^2+2}=\frac{4y^2-12y+9}{y^2+2}=\frac{\left(2y-3\right)^2}{y^2+2}\ge0\)
đẳng thức khi \(y=\frac{3}{2}\Rightarrow x=\frac{3}{2}-1=\frac{1}{2}\)
Vậy: ta có \(C_{max}=4\Rightarrow B\ge\frac{14}{3}-4=\frac{2}{3}\)
Kết luận: GTNN của B=2/3 khi x=1/2
Gtnn của biểu thức :5/6 khi x=1