\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)

\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )

\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

                             đpcm

Gải sử.. 

\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

Có \(\left|a-b\right|^2=\left(a-b\right)^2\)

\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)

\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)

Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng ) 

Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm ) 

\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)

\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? ) 

... 

18 tháng 10 2018

bạn chữa đi bạn

14 tháng 8 2019

a) \(\left(b+1\right)+b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow ab+2b+1=ab+a+b+1\)

\(\Leftrightarrow b=a\)

Câu a sai đề, hình như pk là \(\frac{a}{b}=1\)

14 tháng 8 2019

b) \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Leftrightarrow\left(2a+2\right)\left(a+b\right)-\left(a+b\right)\left(a+b+2\right)=0\)

\(\Leftrightarrow\left(2a+2-a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\)

\(\Leftrightarrow a^2-b^2=0\)

Hình như đề cx sai

6 tháng 9 2019

a) \(\left|a\right|+a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

\(\left|a\right|+a=a+a=2a.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

\(\left|a\right|+a=-a+a=0.\)

b) \(\left|a\right|-a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

\(\left|a\right|-a=a-a=0.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

\(\left|a\right|-a=-a-a=-2a.\)

d) \(\left|a\right|:a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

\(\left|a\right|:a=a:a=1.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

\(\left|a\right|:a=-a:a=-1.\)

Chúc bạn học tốt!

11 tháng 9 2017

a)Ko thể rút gọn

b)Ko thể rút gọn

c)a^2

d)Ko thể rút gọn

e)(-2)|x+3|+3x-3

g)Biểu thức ko thể rút gọn

6 tháng 9 2019

a) \(\left|a\right|+a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

⇒ \(\left|a\right|+a=a+a=2a.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

⇒ \(\left|a\right|+a=-a+a=0.\)

b) \(\left|a\right|-a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

⇒ \(\left|a\right|-a=a-a=0.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

⇒ \(\left|a\right|-a=-a-a=-2a.\)

d) \(\left|a\right|:a\)

+) Với \(a>0\) thì \(\left|a\right|=a.\)

⇒ \(\left|a\right|:a=a:a=1.\)

+) Với \(a< 0\) thì \(\left|a\right|=-a.\)

⇒ \(\left|a\right|:a=-a:a=-1.\)

4 tháng 11 2016

a ) \(A=\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}=\frac{ax\left(a-x\right)\left(a+x\right)}{3\left(a-x\right)\left(a+x\right)}=\frac{ax}{3}\)

Thay \(a=\frac{1}{2};x=-3\), ta có :

\(A=\frac{\frac{1}{2}.-3}{3}=-\frac{1}{2}\)

b ) \(B=\frac{\left(ab+bc+cd+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}=\frac{\left[\left(ab+ad\right)+\left(bc+cd\right)\right]abcd}{ca+cb+da+db+ba-bd-ca+cd}\)

\(=\frac{\left[a\left(b+d\right)+c\left(b+d\right)\right]abcd}{ba+da+cb+cd}=\frac{\left(b+d\right)\left(a+c\right)abcd}{\left(b+d\right)\left(a+c\right)}=abcd\)

Thay \(a=-3;b=-4;c=2;d=3\), ta có :

\(B=\left(-3\right).\left(-4\right).2.3=72\)

 

a: =x^2-4-(x^2-2x-3)

=x^2-4-x^2+2x+3

=2x-1

b: \(=2x^2+3x-10x-15-2x^2+6x+x+7\)

=-8

c: \(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\)