Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hình thang đó là \(ABCD\)có \(AB\)là đáy nhỏ, \(CD\)là đáy lớn.
Khi đó \(AB=AD=BC=1\left(cm\right),AD\perp AC\).
Hạ đường cao \(AH,BK\).
Dễ thấy \(DH=CK\).
Đặt \(DH=CK=x\left(cm\right)\).
Xét tam giác \(ADC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC\)
\(\Leftrightarrow1=x\left(2x+1\right)\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(CD=2x+1=2\left(cm\right)\)
\(AC=\sqrt{CD^2-AD^2}=\sqrt{2^2-1}=\sqrt{3}\left(cm\right)\)
hình thang abcd(ab//cd) có hai đường chéo ac và bd bằng nhau. suy ra abcd là hình thang cân
Tự vẽ hình UwU
ABCD là hbh ( gt ) => AD//BC ; AC//BD ( t/c hình bình hành )
Xét tam giác DMC có AN//CD ( cmt )
\(\Rightarrow\frac{AM}{MC}=\frac{MN}{DM}\)( theo định lý ta lét ) (1)
Xét tam giác CMK có AD//CK ( cmt )
\(\Rightarrow\frac{DM}{MK}=\frac{AM}{MC}\)( theo định lý ta lét ) (2)
Từ (1) và (2) \(\Rightarrow\frac{DM}{MK}=\frac{MN}{DM}\Leftrightarrow DM^2=MN.MK\left(đpcm\right)\)
TL
Đáp án Đúng là C
C.
Tứ giác AMIC là hình thang vuông
Học tốt
Tam giác ABC cân tại A, M, N lần lượt là trung điểm AB, AC. I, K lần lượt là hình chiếu M, N trên BC. Khẳng định sai là:
A.
Tứ giác MNCB là hình thang cân
B.
Tứ giác MNKI là hình chữ nhật
C.
Tứ giác AMIC là hình thang vuông
D.
Tứ giác MNCI là hình thang vuông