Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 2 nha,mik chỉ biết đáp án thôi,cách làm thì mik ko chắc chắn lắm
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
Ta có: \(\left(x-3.5\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(\dfrac{7}{2};\dfrac{1}{10}\right)\)
do
\(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
mà ta có \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
nên \(\left(x-3.5\right)^2+\left(y-\dfrac{1}{10}\right)^4=0\)
suy ra \(\left\{{}\begin{matrix}x-3,5=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}\end{matrix}\right.\)
tick mik nha
\(A=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^2\cdot9^2}=\dfrac{2^{13}\cdot3^7}{2^{15}\cdot3^6}=\dfrac{3}{4}\)
\(C=27\cdot\left(-\dfrac{3}{2}\right)^{-5}\cdot\left(-\dfrac{2}{5}\right)^{-4}:\left(\dfrac{2}{125}\right)^{-1}\)
\(=27\cdot\dfrac{-32}{243}\cdot\dfrac{625}{16}\cdot\dfrac{2}{125}\)
\(=\dfrac{-32}{9}\cdot\dfrac{1}{8}\cdot5\)
\(=-\dfrac{20}{9}\)
c: Ta có: \(\left(\dfrac{1}{2}\right)^{2x+1}=\dfrac{1}{8}\)
\(\Leftrightarrow2x+1=3\)
\(\Leftrightarrow2x=2\)
hay x=1
d: Ta có: \(\left(-\dfrac{1}{3}\right)^{x+3}=\dfrac{1}{81}\)
\(\Leftrightarrow x+3=4\)
hay x=1
Giải:
a) Vì AB // CD nên:
\(\widehat{BAD}+\widehat{ADC}=180^o\) ( 2 góc trong cùng phía )
\(\Rightarrow100^o+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADC}=80^o\)
b) Ta có: \(\widehat{ADC}=\widehat{B_1}=80^o\) ( đối đỉnh )
\(\widehat{BAD}=\widehat{A_1}=100^o\) ( đối đỉnh )
\(\Rightarrow\widehat{A_1}>\widehat{B_1}\left(100^o>80^o\right)\)
c) Vì AB // CD nên:
\(\widehat{ABC}+\widehat{C_1}=180^o\)( 2 góc trong cùng phía )
\(\Rightarrow120^o+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{C_1}=60^o\)
hơi mờ nhé( chụp = máy tính)