\(x^2+y^2+xy=x^2y^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Ta có : \(x^2+y^2+xy=x^2y^2\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Mà \(x^2y^2\le xy\left(xy+1\right)\le\left(xy+1\right)^2\)

Không tồn tại 1 số chính phương giữa 2 số chính phương để xy(xy+1) là 1 số chính phương thì nó phải bằng 1 trong hai số đó .

\(\Rightarrow xy\left(xy+1\right)=0\) 

\(\Rightarrow\left(x,y\right)=\left(0,0\right);\left(1,-1\right);\left(-1,1\right)\)

24 tháng 9 2017

\(x^2+y^2+xy=x^2y^2\)

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 

Thân_mưa ^^

3 tháng 9 2016

Ta có x2 + xy + y2 = xy2

<=> (x + y)= xy(xy + 1) 

Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2

Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0

Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1) 

5 tháng 9 2016

sao ra x=y đc nhỉ 
pt đã cho có dạng  \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y

\(x^2+xy+y^2=x^2y^2.\)

+ x =0; y =0  là nghiệm

+ x y khác  0

\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)

=> x =y 

=> 3x2 =x4 => x2 = 3 loại

Vậy x = y =0 là nghiệm duy nhất

14 tháng 9 2016

                  \(x^2+xy-2008x-2009y-2010=0\)

\(\Leftrightarrow\)\(x^2+xy+x-2009x-2009y-2009=1\)

\(\Leftrightarrow\)        \(x\left(x+y+1\right)-2009\left(x+y+1\right)=1\)

\(\Leftrightarrow\)                           \(\left(x-2009\right)\left(x+y+1\right)=1\)

\(\Rightarrow\)\(\left(x-2009\right)=1\)và  \(\left(x+y+1\right)=1\)\(\Rightarrow\)\(x=2010;y=-2010\)

và     \(\left(x-2009\right)=-1\) và \(\left(x+y+1\right)=-1\)\(\Rightarrow\)\(x=2008;y=-2010\).

NV
18 tháng 2 2020

a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)

Theo Viet đảo, \(x^2+x\)\(y^2+y\) là nghiệm của:

\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)

NV
18 tháng 2 2020

b/ ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)

Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)

\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)

\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)

NV
15 tháng 10 2019

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{2-x}+\sqrt{2+x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2-x}+\sqrt{2+x}=2\)

\(\sqrt{2-x}+\sqrt{2+x}\ge\sqrt{2-x+2+x}=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left[{}\begin{matrix}2-x=0\\2+x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2 tháng 8 2019
https://i.imgur.com/vCUtb5n.jpg