K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

31 tháng 10 2021

TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24

10 tháng 11 2018

\(\left(1+x\right)\left(y+z\right)=xyz+2\)

\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)

\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)

\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)

\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)

Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)

Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) ) 

Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) ) 

Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) ) 

\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)

Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau 

Giải r nhưng quên link, có j e ib gửi link khác cho :)) 

Chúc a học tốt ~ 

10 tháng 11 2018

cảm ơn e nhé, alibaba nguyễn cx giúp anh r

2 tháng 3 2016

\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)


\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(

loại )

\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)

=>x,y,z vô nghiệm hoặc đề sai

2 tháng 3 2016

x=22

y=1

z=1

16 tháng 1 2022

y8 nha

16 tháng 1 2022

Kết quả là ra y8 nha bạn 

13 tháng 10 2018

Ta có:

\(xyz+2z=x^2+2\Leftrightarrow z=\frac{x^2+2}{xy+2}\)

Do \(z\ge1\Rightarrow x\ge y\)

Xét hiệu: \(xy+2-x+2=\left(x+1\right)\left(y-1\right)+3>0\Rightarrow xy+2>x-y\) (do \(y\ge1\))

Gọi d là ước chung lớn nhất của x và xy+2

\(\Rightarrow\hept{\begin{cases}xy+2⋮d\\x⋮d\end{cases}}\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Xét d=2. Đặt \(2\left(x-y\right)=k\left(xy+2\right)\) (k là số tự nhiên)

Do x,y là các số nguyên dương và xy+2>x-y nên 2>k

\(\Rightarrow k\in\left\{1;0\right\}\)

Xét k=1 thì \(2\left(x-y\right)=xy+2\Rightarrow\left(x+y\right)\left(2-y\right)=6\)

Do x+y>0 nên 2-y>0 => 0<y<2 =>y=1 =>x=5 thay vào pt đầu ta đk z=27/7 (ko t/m)

Xét k=0 thì:\(x-y=0\Rightarrow x=y\) thay vào pt đầu ta đk z=1 thay z lại tìm đk x=y=1

Xét d=1

Đặt x-y=k(xy+2) (k là số tự nhiên)

Do xy+2>x-y nên k<1 =>k=0

 làm tương tự trên ta tìm đk x=y=z=1

KL

13 tháng 10 2018

Ta có:

\(xyz=x^2-2z+2\)

+) Nếu z = 1 thì :

\(xy=x^2\Rightarrow x=y=k\left(k\inℕ^∗\right)\)

Ta có ( k , k ,1) là một nghiệm của pt

+) Xét \(z\ge2\)

Theo giả thiết ta có:

\(2z-2=x\left(x-yz\right)\Rightarrow\left(2z-2\right)⋮x\Rightarrow2z-2=tx\left(t\in N\right);t=x-yz\)

Laij có: \(t=x-yz\Rightarrow yz=x-t\Rightarrow y=\frac{x-t}{z}=\frac{2\left(x-t\right)}{tx+2}\)

\(\Rightarrow2\left(x-t\right)\ge tx+2\Leftrightarrow\left(2-t\right)x\ge2\left(t+1\right)>0\)( vì x >0)

\(\Rightarrow2-t>0\Rightarrow t=1\)

Khi đó:  \(y=\frac{2\left(x-1\right)}{x+2}=2-\frac{6}{x+2}< 2\)

\(\Rightarrow y=1\Rightarrow x=4;z=3\)

Bn tự KL nhé

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry