Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
TK: Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z) - Hoc24
\(\left(1+x\right)\left(y+z\right)=xyz+2\)
\(\Leftrightarrow\)\(xy+xz+y+z=xyz+2\)
\(\Leftrightarrow\)\(xyz-xy-xz+x=y+z-2+x\)
\(\Leftrightarrow\)\(x\left(yz-y-z+1\right)=x+y+z-2\)
\(\Leftrightarrow\)\(x\left(y-1\right)\left(z-1\right)=x+\left(y-1\right)+\left(z-1\right)\)
Đặt \(a=x;b=y-1;c=z-1\) pt \(\Leftrightarrow\)\(abc=a+b+c\)
Ta có : \(a\ge1;b\ge0;c\ge0\) ( do \(x,y,z\ge1\) )
Giả sử \(b=0\) pt \(\Leftrightarrow\)\(a+c=0\) ( vô lí vì \(a+c\ge1\) )
Tương tự, giả sử \(c=0\) pt \(\Leftrightarrow\)\(a+b=0\) ( vô lí vì \(a+b\ge1\) )
\(\Rightarrow\)\(a,b,c\ge1\) và \(abc=a+b+c\)
Đến đây giả sử \(a\ge b\ge c\) đc r vì a, b, c có vai trò như nhau
Giải r nhưng quên link, có j e ib gửi link khác cho :))
Chúc a học tốt ~
\(\Leftrightarrow\int^{xz+xy=44}_{yz+xz=23}\Rightarrow\int^{xy^2+\left(x^2-44\right)y-21x=0}_{\left(\sqrt{x^4-4x^2+1936+}+x^2+44\right)z-46x=0\Leftrightarrow\left(\sqrt{x^4-4x^2+1936}-x^2-44\right)z-46x=0}\)
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(
loại )
\(\Rightarrow\left[y=\frac{-\sqrt{x^4-4x^2+1936}+x^2-44}{2x},z=\frac{-46x}{\sqrt{x^4-4x^2+1936}-x^2-44}\right]\)(loại)
=>x,y,z vô nghiệm hoặc đề sai
Ta có:
\(xyz+2z=x^2+2\Leftrightarrow z=\frac{x^2+2}{xy+2}\)
Do \(z\ge1\Rightarrow x\ge y\)
Xét hiệu: \(xy+2-x+2=\left(x+1\right)\left(y-1\right)+3>0\Rightarrow xy+2>x-y\) (do \(y\ge1\))
Gọi d là ước chung lớn nhất của x và xy+2
\(\Rightarrow\hept{\begin{cases}xy+2⋮d\\x⋮d\end{cases}}\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Xét d=2. Đặt \(2\left(x-y\right)=k\left(xy+2\right)\) (k là số tự nhiên)
Do x,y là các số nguyên dương và xy+2>x-y nên 2>k
\(\Rightarrow k\in\left\{1;0\right\}\)
Xét k=1 thì \(2\left(x-y\right)=xy+2\Rightarrow\left(x+y\right)\left(2-y\right)=6\)
Do x+y>0 nên 2-y>0 => 0<y<2 =>y=1 =>x=5 thay vào pt đầu ta đk z=27/7 (ko t/m)
Xét k=0 thì:\(x-y=0\Rightarrow x=y\) thay vào pt đầu ta đk z=1 thay z lại tìm đk x=y=1
Xét d=1
Đặt x-y=k(xy+2) (k là số tự nhiên)
Do xy+2>x-y nên k<1 =>k=0
làm tương tự trên ta tìm đk x=y=z=1
KL
Ta có:
\(xyz=x^2-2z+2\)
+) Nếu z = 1 thì :
\(xy=x^2\Rightarrow x=y=k\left(k\inℕ^∗\right)\)
Ta có ( k , k ,1) là một nghiệm của pt
+) Xét \(z\ge2\)
Theo giả thiết ta có:
\(2z-2=x\left(x-yz\right)\Rightarrow\left(2z-2\right)⋮x\Rightarrow2z-2=tx\left(t\in N\right);t=x-yz\)
Laij có: \(t=x-yz\Rightarrow yz=x-t\Rightarrow y=\frac{x-t}{z}=\frac{2\left(x-t\right)}{tx+2}\)
\(\Rightarrow2\left(x-t\right)\ge tx+2\Leftrightarrow\left(2-t\right)x\ge2\left(t+1\right)>0\)( vì x >0)
\(\Rightarrow2-t>0\Rightarrow t=1\)
Khi đó: \(y=\frac{2\left(x-1\right)}{x+2}=2-\frac{6}{x+2}< 2\)
\(\Rightarrow y=1\Rightarrow x=4;z=3\)
Bn tự KL nhé
bạn ơi đề khó nhìn vậy