\(^x_2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

ta có : \(\left(2-x\right)\log_2x>x^2-5x+6\) \(\left(đk:x>0\right)\)

\(\Leftrightarrow\left(2-x\right)\log_2x>\left(2-x\right)\left(3-x\right)\) (1)

th1) \(x< 2\) \(\left(1\right)\Leftrightarrow\log_2x>3-x\Leftrightarrow x>2^{3-x}>2^{3+2}\Leftrightarrow x>32\left(loại\right)\)

th2) \(x>2\) \(\left(1\right)\Leftrightarrow\log_2x< 3-x\Leftrightarrow x< 2^{3-x}< 2^{3+2}\Leftrightarrow x< 32\)

kết hợp điều kiện ta có \(2< x< 32\)

vậy \(2< x< 32\) .

17 tháng 6 2018

bài 1 mk o bt lm ; nên mk lm câu 2 thôi nha .

bài 2) ta có : \(\log_x\left(x-\dfrac{1}{4}\right)\ge2\Leftrightarrow x-\dfrac{1}{4}\ge x^2\Leftrightarrow x^2-x+\dfrac{1}{4}\le0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\)

mà ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow0\le\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)

vậy \(x=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Ta có:

\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)

\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)

\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)

\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)

\(\Leftrightarrow (x+2)(x+4)=4^3=64\)

\(\Leftrightarrow x^2+6x-56=0\)

\(\Leftrightarrow x=-3\pm \sqrt{65}\)

Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt

19 tháng 11 2017

bạn ơi mình hỏi tí, sao log\(^{\left(x+4\right)}_2=2log^{\left(x+4\right)}_4\)

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)

a)

\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)

\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)

\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)

-------------------------------------------------------

b) Điều kiện: \(x>0\)

Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)

\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)

Như vậy:

\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)

\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)

\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)

9 tháng 11 2017

thanks

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

1 tháng 4 2016

\((6^2)^x.6^3<2^x.2^7.\dfrac{(3^3)^x}{3}=(2.3^3)^x.\dfrac{2^7}{3}\Leftrightarrow \left(\dfrac{2.3^3}{6^2}\right)^x>\dfrac{3.6^3}{2^7}\)

Suy ra \(\left(\dfrac{3}{2}\right)^x>\left(\dfrac{3}{2}\right)^4\).

Vậy x>4

NV
1 tháng 8 2020

Đặt \(log_5\left(x+5\right)=a\Rightarrow x+5=5^a\)

\(\Rightarrow a^2-\left(m+6\right)log_25^a+m^2+9=0\)

\(\Leftrightarrow a^2-a\left(m+6\right)log_25+m^2+9=0\)

\(\Delta=\left(m+6\right)^2.log^2_25-4\left(m^2+9\right)\ge0\)

\(\Leftrightarrow\left(log^2_25-4\right)m^2+\left(12log_2^25\right).m+36\left(log_2^25-1\right)\ge0\)

Bấm máy BPT trên và lấy số nguyên gần nhất ta được \(m\ge-2\Rightarrow\)\(20+2+1=23\) giá trị nguyên của m