K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

\(\left(x+1\right)\left(x-1\right)=x^2-x+x-1=x^2-1\)

\(\left(x-2y\right)\left(x+2y\right)=x^2+2xy-2xy-4y^2=x^2-4y^2\)

20 tháng 8 2019

\(\left(x+1\right).\left(x-1\right)\)

\(=x^2-x+x-1\)

\(=x^2+\left(-x+x\right)-1\)

\(=x^2-1.\)

\(\left(x-2y\right).\left(x+2y\right)\)

\(=x^2+2xy-2xy-4y^2\)

\(=x^2+\left(2xy-2xy\right)-4y^2\)

\(=x^2-4y^2.\)

Chúc bạn học tốt!

19 tháng 10 2021

1, \(2x^2+4x=2x\left(x+2\right)\)

2, \(15x^3+5x^2-10x=5x\left(3x^2+x-2\right)=5x\left(x-\dfrac{2}{3}\right)\left(x+1\right)\)

3) \(5x^2\left(x-2y\right)+15x\left(x-2y\right)=\left(5x^2+15x\right)\left(x-2y\right)=5x\left(x+3\right)\left(x-2y\right)\)

4) \(3\left(x-y\right)+5x\left(y-x\right)=\left(x-y\right)\left(3-5x\right)\)

5) \(5x^2-10x=5x\left(x-2\right)\)

6) \(3x-6y=3\left(x-2y\right)\)

7) \(25x^2+5x^3+x^2y=x^2\left(25+5x+y\right)\)

8) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)

9) \(x\left(y-1\right)-y\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)

10) \(10x\left(x-y\right)-8y\left(y-x\right)=\left(10x+8y\right)\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)

19 tháng 10 2021

\(1,=2x\left(x+2\right)\\ 2,=5x\left(3x^2+x-2\right)\\ 3,=\left(x-2y\right)\left(5x^2+15x\right)=5x\left(x+3\right)\left(x-2y\right)\\ 4,=\left(x-y\right)\left(3-5x\right)\\ 5,=5x\left(x-2\right)\\ 6,=3\left(x-2y\right)\\ 7,=5x^2\left(5+x+y\right)\\ 8,=7xy\left(2x-3y+4xy\right)\\ 9,=\left(y-1\right)\left(x-y\right)\\ 10,=\left(x-y\right)\left(10x+8y\right)=2\left(5x+4y\right)\left(x-y\right)\)

a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)

\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)

\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)

\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)

\(=\left(x^2+9x+19\right)^2\)

24 tháng 8 2021

b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)

\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)

c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)

\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)

\(=\left(x-y-2\right)^2\)

d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)

\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)

\(=\left(x+y+1\right)^2\)

23 tháng 10 2021

a: Ta có: \(A=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=10

a: (x-3)(x-1)-x(x-2)=0

=>\(x^2-4x+3-x^2+2x=0\)

=>\(-2x+3=0\)

=>-2x=-3

=>\(x=\dfrac{3}{2}\)

b: \(\left(x+2y\right)^2-\left(2x-y\right)^2\)

\(=\left(x+2y+2x-y\right)\left(x+2y-2x+y\right)\)

\(=\left(3x+y\right)\left(-x+3y\right)\)

18 tháng 4 2021

\(\dfrac{x+2}{x-3}< 0\)vì \(x+2>x-3\)

\(\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)<=> -2 < x < 3 

 

a: \(=a\left(y^2-2yz+z^2\right)\)

\(=a\left(y-z\right)^2\)

b: \(=\left(x^2+6xy+9y^2\right)-16\)

=(x+3y)^2-16

=(x+3y+4)(x+3y-4)

c: \(=7\left(a-b\right)+\left(a-b\right)\left(a+b\right)\)

=(a-b)(7+a+b)

d: \(36x^4-13x^2\)

=x^2*36x^2-x^2*13

=x^2(36x^2-13)

f: x^2-2xy+y^2-49

=(x-y)^2-49

=(x-y-7)(x-y+7)

e: 2x^3-18x

=2x(x^2-9)

=2x(x-3)(x+3)

g: 2x+2y-x^2-xy

=2(x+y)-x(x+y)

=(x+y)(2-x)

h: (x^2+3)^2+16

=x^4+6x^2+25

=x^4+10x^2+25-4x^2

=(x^2+5)^2-4x^2

=(x^2-2x+5)(x^2+2x+5)

4 tháng 9 2023

e cảm ơn a

27 tháng 1 2022

\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)=15\)

⇔ \(\left(x^3-3.x^2.3+3.x.3^2-3^3\right)-\left(x^3-3^3\right)+9x+9=15\)

⇔ \(x^3-9x^2+27x-27-x^3+27+9x+9=15\)

⇔ \(36x-9x^2+9=15\)

⇔ \(9x\left(4-x\right)=6\)

 

3 tháng 8 2023

a

\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

b

x^3 chứ: )

\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)

11 tháng 3 2018

Ta có y^2+4^x+2y-2^(x+1)+2=0

<=>y^2+2y+1+(2^x)^2-2^x*2+1=0

<=>(y+1)^2 +(2^x-1)^2=0

<=> y+1=0 và 2^x=1

<=> y=-1 và x=0