Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)
\(1-\frac{1}{x+1}=\frac{4}{5}\)
\(\frac{x}{x+1}=\frac{4}{5}\)
\(\frac{x}{x+1}=\frac{4}{4+1}\)
\(\Rightarrow x=4\)
Vậy x = 4
=))
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{x-1}=1-\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{5}\)
\(\Leftrightarrow x-1=5\)
\(\Leftrightarrow x=5+1\)
\(\Leftrightarrow x=6\)
~ Rất vui vì giúp đc bn ~ ^_<
tong so xoai nguoi thứ 2 và thú 4
(5-1):(1-3/5)=10 (quả)
tông số xoai nguôi thứ 2 thứ 3 thứ 4mua dược:
(10-1):(1-2/5)=15(quả)
số xoai trong giỏ
(15 +1):(1-1/5)=20 (quả)
vậysố xoai trong giỏ20 qua
...
= 1/2-1/3+1/3-1/4+...+ 1/19-1/20
= 1/2-1/20
=9/20
có phải như thế này ko bn
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{19.20}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\frac{1}{2}-\frac{1}{20}\)
A = \(\frac{9}{20}\)
\(B=\frac{1}{99.100}-\frac{1}{98.99}-\frac{1}{97.98}-.....-\frac{1}{1.2}=-\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
\(B=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=-\left(1-\frac{1}{100}\right)\)
B = \(-\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(=1+0+0+...+0-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 11\)
Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 11\)
=1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100
=50/100-1/100
=49/100<1
=> dãy trên < 1 đđcm
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{1}-\frac{1}{100}\)
\(B=\frac{99}{100}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Ta có TQ: (phân số đầu - phân số cuối) : khoảng cách
Áp dụng vào bài toán => (\(\frac{1}{1}\)-\(\frac{1}{100}\)) : 1 =\(\frac{99}{100}\)
lý dó 1 là khoảng cách vì cách lm như sau: 2-1=1
3-2=1
.....
100-99=1
=> khoảng cách là 1
Chúc bn hk tốt nhé!!
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Chúc bạn học tốt
A= \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{99.100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)+\(\frac{-1}{100}\)
A= \(\frac{100}{100}\)+\(\frac{-1}{100}\)
A= \(\frac{99}{100}\)
Vậy A= \(\frac{99}{100}\)