\(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne1\\x\ge0\\x\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Ta có : \(B=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{2\sqrt{x}}\)

=> \(B=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)+\frac{1}{2\sqrt{x}}\)

=> \(B=\left(\frac{2}{1-x}\right):\left(\frac{2\sqrt{x}}{1-x}\right)+\frac{1}{2\sqrt{x}}=\frac{2\left(1-x\right)}{2\sqrt{x}\left(1-x\right)}+\frac{1}{2\sqrt{x}}\)

=> \(B=\frac{1}{\sqrt{x}}+\frac{1}{2\sqrt{x}}=\frac{2}{2\sqrt{x}}+\frac{1}{2\sqrt{x}}=\frac{3}{2\sqrt{x}}\)

Vậy ....

24 tháng 7 2020

ủa mà sao lại thank guy dạ

21 tháng 8 2017

Đề có sai ko bn?Phương Phan Thùy

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(Q< 1\)