Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(\overline{ababab}\)\(=\overline{ab0000}+\overline{ab00}+\overline{ab}\)\(=\overline{ab}.10000+\overline{ab}.100+\overline{ab.1}\)
\(=\overline{ab}.\left(10000+100+1\right)=\overline{ab}.10101\).
Vì 10101 chia hết cho 3 nên ab.10101 chia hết cho 3.
Vậy \(\overline{ababab}\) là bội của 3.
Công thức
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)+1=\(\frac{1}{3}\)
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)=\(\frac{1}{3}\)+1
(x-\(\frac{1}{3}\)):\(\frac{-12}{45}\)=\(\frac{4}{3}\)
(x-\(\frac{1}{3}\))=\(\frac{4}{3}\)x\(\frac{-12}{45}\)
(x-\(\frac{1}{3}\))=\(\frac{-16}{45}\)
x=\(\frac{-16}{45}\)+\(\frac{1}{3}\)
x=\(\frac{-1}{45}\)
\(H=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow H=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3H}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3H}{5}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\)
\(\Rightarrow\frac{3H}{5}=\frac{1}{4}-\frac{1}{28}\)
\(\Rightarrow\frac{3H}{5}=\frac{3}{14}\)
\(\Rightarrow H=\frac{3}{14}.\frac{5}{3}\)
\(\Rightarrow H=\frac{5}{14}\)
Vậy \(H=\frac{5}{14}\)
Tui nhận xét nha: Ừm thì cũng không hẳn là xấu đâu , nói thật mà là QUÁ Xấu
a) Ta có: \(\overline{ababab}=\overline{ab}\cdot10101\) mà \(10101⋮3\) nên \(10101.\overline{ab}⋮3\Rightarrow\overline{ababab}⋮3\)
b)
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{1999}+5^{2002}\right)+\left(5^{2000}+5^{2003}\right)+\left(5^{2001}+5^{2004}\right)\)\(=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+5^7.\left(1+5^3\right)+5^8.\left(1+5^3\right)+5^9.\left(1+5^3\right)+...+5^{1999}.\left(1+5^3\right)+5^{2000}.\left(1+5^3\right)+5^{2001}.\left(1+5^3\right)\)\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{1999}+5^{2000}+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{1999}+5^{2000}+5^{2001}\right)⋮126\)
Vậy \(S⋮126\)
\(S=5+5^2+5^3+5^4+...+5^{2004}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\left(5^5+5^7\right)+\left(5^6+5^8\right)+...+\left(5^{2002}+5^{2004}\right)\)\(=5.\left(1+5^2\right)+5^2.\left(1+5^2\right)+5^5.\left(1+5^2\right)+...+5^{2002}.\left(1+5^2\right)\)\(=5.26+5^2.26+5^5.26+...+5^{2002}.26\)
\(=26.\left(5+5^2+5^5+...+5^{2002}\right)\)
\(=26.5.\left(1+5+5^4+5^5+...+5^{2001}\right)\)
\(=130.\left(1+5+5^4+...+5^{2001}\right)⋮65\)
Vậy \(S⋮65\)