Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)
Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)
.............................
\(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)
Ta có:
\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)
1/4+2/5+6/8+2/15+6/7
=(1/4+6/8)+(2/5+2/15)+6/7
=(2/8+6/8)+(6/15+2/15)+6/7
=1+8/15+6/7
=1+56/105+90/105
=1+146/105
=1+105/105+41/105
=1+1+41/105
=2+41/105
=2 và 41/105
2 và 41/105 là hỗn số nha
1/4+2/5+6/8+2/15+6/7
Ta có:
1/4=1-3/4
6/8=3/4
2/15=2/3*5=1/3-1/5
==> 1-3/4+2/5+3/4+1/3-1/5+6/7
=1+1/3+1/5+6/7
=(105+35+21+90)/105
=251/105.
\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(\Leftrightarrow A=1-\frac{1}{46}\)
\(\Leftrightarrow A=\frac{45}{46}\)
a
\(5\frac{4}{7}:x+=13\)
\(\frac{39}{7}:x=13\)
\(x=\frac{39}{7}:13\)
\(x=\frac{3}{7}\)
\(\frac{4}{7}x=\frac{9}{8}-0,125\)
\(\frac{4}{7}x=1\)
\(x=1:\frac{4}{7}\)
\(x=\frac{7}{4}=1\frac{3}{4}\)
c, 1/3-1/4+1/4-1/5+........+1/50-1/51
= 1/3-1/51
= 16/51
d, (đề bài)
= 1/1.5+1/5.9 +.........+1/97.101
=1/1-1/5+1/5-1/9+.....+1/97-1/101
=1/1-1/101
= 100/101
d, \(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{97.101}\)
\(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(a)15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15\frac{3}{13}-3\frac{4}{7}-8\frac{3}{13}\)
\(=15\frac{3}{13}-8\frac{3}{13}-3\frac{4}{7}\)
\(=7-3\frac{4}{7}\)
\(=6\frac{7}{7}-3\frac{4}{7}=3\frac{3}{7}\)
\(b)\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7\frac{4}{9}-4\frac{7}{11}-3\frac{4}{9}\)
\(=7\frac{4}{9}-3\frac{4}{9}-4\frac{7}{11}\)
\(=4-4\frac{7}{11}=\frac{7}{11}\)