Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)
\(\frac{1}{\left(3u-1\right)^2}-\frac{3}{\left(3u+11\right)^2}+\frac{2}{\left(3u-1\right)\left(3u+11\right)}=0\)
\(\Leftrightarrow\left(3u+11\right)^2-3\left(3u-1\right)^2+2\left(3u-1\right)\left(3u+11\right)=0\)
\(\Leftrightarrow\left(3u+11\right)^2-\left(3u-1\right)\left(3u+11\right)+3\left[\left(3u-1\right)\left(3u+11\right)-\left(3u-1\right)^2\right]=0\)
\(\Leftrightarrow12\left(3u+11\right)-36\left(3u-1\right)=0\)
\(\Leftrightarrow3u=7\Rightarrow u=\frac{7}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}1-3u\ne0\\3u+11\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3u\ne1\\3u\ne-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)
Ta có: \(\frac{2}{\left(1-3u\right)\left(3u+11\right)}=\frac{1}{9u^2-6u+1}-\frac{3}{\left(3u+11\right)^2}\)
\(\Leftrightarrow\frac{2}{\left(1-3u\right)\left(3u+11\right)}-\frac{1}{\left(3u-1\right)^2}+\frac{3}{\left(3u+11\right)^2}=0\)
\(\Leftrightarrow\frac{2\cdot\left(1-3u\right)\cdot\left(3u+11\right)}{\left(1-3u\right)^2\left(3u+11\right)^2}-\frac{\left(3u+11\right)^2}{\left(1-3u\right)^2\left(3u+11\right)^2}+\frac{\left(1-3u\right)^2\cdot3}{\left(3u+11\right)^2\left(1-3u\right)^2}=0\)
\(\Leftrightarrow\left(2-6u\right)\left(3u+11\right)-\left(9u^2+66u+121\right)+\left(1-6u+9u^2\right)\cdot3=0\)
\(\Leftrightarrow6u+22-18u^2-66u-9u^2-66u-121+3-18u+27u^2=0\)
\(\Leftrightarrow-144u-96=0\)
\(\Leftrightarrow-144u=96\)
\(\Leftrightarrow u=-\frac{96}{144}=-\frac{2}{3}\)(thỏa mãn)
Vậy: \(u=-\frac{2}{3}\)
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
\(\frac{150}{5.8}+\frac{150}{8.11}+\frac{150}{11.14}+.....+\frac{150}{47.50}\)
\(=50.\left(\frac{3}{5.8}+\frac{5}{8.11}+.....+\frac{3}{47.50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{47}-\frac{1}{50}\right)\)
\(=50.\left(\frac{1}{5}-\frac{1}{50}\right)\)
\(=50.\frac{9}{50}=9\)
\(VP=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\)
\(=1-1+\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{40024}{2012}-1\right)+2012\)
\(=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}+\frac{2012}{1}\)
\(=2012.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow2012=503.x\Rightarrow x=\frac{2012}{503}=4\)
Xét số hạng tổng quát:
\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)
= \(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)
Thay k từ 1 đến 12 ta được:
A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)
a) ĐKXĐ: \(x\notin\left\{\frac{1}{3};\frac{-11}{3}\right\}\)
Ta có: \(\frac{2}{\left(1-3x\right)\left(3x+11\right)}=\frac{1}{9x^2-6x+1}-\frac{3}{\left(3x+11\right)^2}\)
\(\Leftrightarrow\frac{2\left(1-3x\right)\left(3x+11\right)}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}=\frac{\left(3x+11\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}-\frac{3\left(1-3x\right)^2}{\left(1-3x\right)^2\cdot\left(3x+11\right)^2}\)
\(\Leftrightarrow-18x^2-60x+22=9x^2+66x+121-3\left(1-6x+9x^2\right)\)
\(\Leftrightarrow-18x^2-60x+22-9x^2-66x-121+3\left(1-6x+9x^2\right)=0\)
\(\Leftrightarrow-27x^2-126x-99+3-18x+27x^2=0\)
\(\Leftrightarrow-144x-96=0\)
\(\Leftrightarrow-144x=96\)
hay \(x=\frac{-2}{3}\)(tm)
Vậy: \(x=\frac{-2}{3}\)
đề là gì ?
giai pt