Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2\ge0\\\left|y+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\Rightarrow\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{4}\right)^2+\left|y+\dfrac{1}{4}\right|+\dfrac{13}{14}\ge\dfrac{13}{14}\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2=0\\\left|y+\dfrac{1}{4}\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{4}=0\\y+\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=\dfrac{-1}{4}\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{13}{14}\) khi \(x=\dfrac{1}{4};y=-\dfrac{1}{4}\)
\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)
\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)
\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)
Vậy \(x\in\left\{22;23;24;...\right\}\)
b, \(\dfrac{x-3}{4}=\dfrac{15}{20}\)
<=> \(\dfrac{x-3}{4}=\dfrac{3}{4}\)
=> x-3=3
<=> x=6
Vậy x=6
\(a,\dfrac{x}{15}=\dfrac{4}{y}=\dfrac{-2}{5}\)
* \(\dfrac{x}{15}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{-6}{15}\)
\(\Rightarrow x=-6\)
*\(\dfrac{4}{y}=\dfrac{-2}{5}\)
\(\Rightarrow\dfrac{4}{y}=\dfrac{4}{-10}\)
\(\Rightarrow y=-10\)
Vậy x = - 6 ; y = - 10
\(b,\dfrac{x-3}{4}=\dfrac{15}{20}\)
=> ( x - 3 ) . 20 = 4. 15
=> 20x - 60 = 60
=> 20x = 60 + 60
=> 20x = 120
=> x = 120 : 20
=> x = 6
Vậy x = 6
\(c,\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{22}{-9}+\dfrac{-7}{15}< x\le\dfrac{-1}{3}+\dfrac{-1}{4}+\dfrac{-5}{12}\)
\(\Rightarrow\dfrac{-5}{9}+\dfrac{-8}{15}+\dfrac{-22}{9}+\dfrac{-7}{15}< x\le\dfrac{-4}{12}+\dfrac{-3}{12}+\dfrac{-5}{12}\)
\(\Rightarrow\left(\dfrac{-5}{9}+\dfrac{-22}{9}\right)+\left(\dfrac{-8}{15}+\dfrac{-7}{15}\right)< x\le-1\)
\(\Rightarrow-3+\left(-1\right)< x\le-1\)
\(\Rightarrow-4< x\le-1\)
\(\Rightarrow x=-3;-2;-1\)
a) \(\dfrac{1}{2}x-\dfrac{3}{4}x-\dfrac{7}{3}=-\dfrac{5}{6}\\ < =>-\dfrac{1}{4}x-\dfrac{7}{3}=-\dfrac{5}{6}\\ < =>-\dfrac{1}{4}x=-\dfrac{5}{6}+\dfrac{7}{3}=\dfrac{3}{2}\\ =>x=\dfrac{3}{2}:\dfrac{-1}{4}=-6\)
b) \(\left|x-\dfrac{1}{6}\right|+-\dfrac{5}{12}=\dfrac{4}{7}.\dfrac{14}{48}\\ < =>\left|x-\dfrac{1}{6}\right|=\left(\dfrac{4}{7}.\dfrac{14}{48}\right)-\left(-\dfrac{5}{12}\right)=\dfrac{1}{6}+\dfrac{5}{12}=\dfrac{7}{12}\\ \)
Xảy ra 2 trường hợp:
+) TH1: \(x-\dfrac{1}{6}=\dfrac{7}{12}\\ =>x=\dfrac{7}{12}+\dfrac{1}{6}=\dfrac{3}{4}->\left(a\right)\)
+) TH2" \(-\left(x-\dfrac{1}{6}\right)=\dfrac{7}{12}\\ < =>-x+\dfrac{1}{6}=\dfrac{7}{12}\\ < =>-x=\dfrac{7}{12}-\dfrac{1}{6}=\dfrac{5}{12}\\ =>x=-\dfrac{5}{12}->\left(b\right)\)
Từ (a) và (b) => \(x\in\left\{-\dfrac{5}{12};\dfrac{3}{4}\right\}\)
a, \(\dfrac{1}{2}x-\dfrac{3}{4}x-\dfrac{7}{3}=\dfrac{-5}{6}\)
\(\Rightarrow\dfrac{-1}{4}x=\dfrac{-5}{6}+\dfrac{7}{3}\)
\(\Rightarrow\dfrac{-1}{4}x=\dfrac{3}{2}\Rightarrow x=-6\)
Vậy \(x=-6\)
b, \(\left|x-\dfrac{1}{6}\right|+\dfrac{-5}{12}=\dfrac{4}{7}.\dfrac{14}{48}\)
\(\Rightarrow\left|x-\dfrac{1}{6}\right|-\dfrac{5}{12}=\dfrac{1}{6}\)
\(\Rightarrow\left|x-\dfrac{1}{6}\right|=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{6}=\dfrac{-7}{12}\\x-\dfrac{1}{6}=\dfrac{7}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{12}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-5}{12};\dfrac{3}{4}\right\}\)
Chúc bạn học tốt!!!
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)