Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Xét tam giác ABH và tam giác ACK ta có:
AB=AC (tam giác ABC vuông cân tại A)
Góc BAH = góc ACK (cùng phụ với A1)
góc B1=A1(cùng phụ với BAH )
=> tam giác ABH = tam giác CAK (gcg)
BH=AK (2 cạnh tương ứng ) (đpcm)
b,AM là trung tuyến của tam giác ABC vuông cân tại A =>AM=BC/2 (1) và
AM vuông góc với BC
ta có: BM=BC/2 (1)
Từ (1) và (2) => AM=BM
- Xét tam giác MBH và tam giác MAK ta có:
MB=AM (CM trên)
BH=AK (phần a)
B2= Góc KAM (cùng phụ với AEM)
đpcm
c, Theo phần b: tam giác MBH = tam giác MAK
MH=MK (2 cạnh tg ứng) => tam giác MHK cân ở M
tam giác MBH = tam giác MAK =>gócBHM = AKM (2 góc tương ứng)
+ Ta có:góc MHK+BHM=900 . hay:
+ tam giác MHK có:góc MHK+AKM+HMK=1800 .hay: 900 + HMK = 1800 =>HMK=900
a) \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{ACB}\) ; \(AB=AC\)
mà \(\widehat{ABC}+\widehat{ABM}=\widehat{ACB}+\widehat{ACN}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{ABM}=\widehat{ACN}\)
Xét: \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
\(BM=CN\)(gt)
suy ra: \(\Delta ABM=\Delta ACN\)(c.g.c)
\(\Rightarrow\)\(AM=AN\)(cạnh tương ứng)
\(\Rightarrow\)\(\Delta AMN\)cân tại \(A\)
xét tam giác ABM và tam giác ACN có: AB=AC(gt); BM=CN(gt); góc ABM= góc ACN(cùng kề bù vs góc ABC)
suy ra tam giác ABM=tam giác ACN(c.g.c)
suy ra AM=AN
suy ra tam giác AMN cân tại A
b, xét tam giác ABH và tam giác ACK có: góc AHB= goác AKC =90 độ; AB=AC(gt); góc HAB= góc KAC ( do tam giác AMB= tam giác ANC)
suy ra tam giác AHB= tam giác AKC(ch-gn)
suy ra BH=CK