Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))
Do đó: ΔABH\(\sim\)ΔACK(g-g)
c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)
mà BD+CD=BC=30cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)
a) Xét tam giác ABN và tam giác ACM
có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)
=> ΔABN ∽ ΔACM
b) Có ΔABN ∽ ΔACM
\(\widehat {ANB} = \widehat {AMC}\)
Có \(\widehat {ANB} + \widehat {CNB} = {180^o}\)
\(\widehat {AMC} + \widehat {BMC} = {180^o}\)
=> \(\widehat {CNB} = \widehat {BMC}\)
Xét tam giác IBM và tam giác ICN
Có \(\widehat {CNB} = \widehat {BMC}\) và \(\widehat {IBM} = \widehat {ICN}\)
=> ΔIBM ∽ ΔICN (g.g)
=> \(\frac{{IB}}{{IC}} = \frac{{IM}}{{IN}}\)
=> IB.IN=IC.IM
a) Xét ΔAMB có
MD là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{MB}{MA}=\dfrac{BD}{AD}\)(Định lí Tia phân giác)
⇒\(\dfrac{MB}{4}=\dfrac{1.5}{3}=\dfrac{1}{2}\)
hay MB=2(cm)
Vậy: MB=2cm
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm
2 AC ???
tức là góc A lớn hơn 2 lần góc C đó