K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))

Do đó: ΔABH\(\sim\)ΔACK(g-g)

c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)

mà BD+CD=BC=30cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Xét tam giác ABN và tam giác ACM

có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)

=> ΔABN ∽ ΔACM

b) Có ΔABN ∽ ΔACM

\(\widehat {ANB} = \widehat {AMC}\)

Có \(\widehat {ANB} + \widehat {CNB} = {180^o}\)

     \(\widehat {AMC} + \widehat {BMC} = {180^o}\)

=> \(\widehat {CNB} = \widehat {BMC}\)

Xét tam giác IBM và tam giác ICN 

Có \(\widehat {CNB} = \widehat {BMC}\) và \(\widehat {IBM} = \widehat {ICN}\)

  => ΔIBM ∽ ΔICN (g.g)

=> \(\frac{{IB}}{{IC}} = \frac{{IM}}{{IN}}\)

=> IB.IN=IC.IM

a) Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{MB}{MA}=\dfrac{BD}{AD}\)(Định lí Tia phân giác)

\(\dfrac{MB}{4}=\dfrac{1.5}{3}=\dfrac{1}{2}\)

hay MB=2(cm)

Vậy: MB=2cm

22 tháng 5 2021

B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB

             +)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )

                                                          BAC chung

                    Do đó: tg AEC ~ tg ADB ( gg)

         => AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)

     b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )

                        

22 tháng 5 2021

A B C 5 5 6 M N

a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )

\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)

\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm 

\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm