K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

a) \(2x^2-4x+7=x^2+x^2-4x+4+3\)

\(=x^2+\left(x-2\right)^2+3\)

GTNN là 3

b) \(9x^2-6x+5=\left(3x\right)^2-2.3x+2+3\)

\(=\left(3x+\sqrt{2}\right)^2+3\)

Gtnn là 3

tạm thời 2 câu vậy nhé !!!

30 tháng 7 2017

a, \(A=2x^2-4x+7\)

\(=2\left(x^2-2x+1+\dfrac{5}{2}\right)\)

\(=2\left(x-1\right)^2+5\ge5\)

Dấu " = " khi \(2\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy \(MIN_A=5\) khi x = 1

b, \(B=9x^2-6x+5\)

\(=9x^2-6x+1+4\)

\(=\left(3x-1\right)^2+4\ge4\)

Dấu " = " khi \(\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MIN_B=4\) khi \(x=\dfrac{1}{3}\)

c, d, e tương tự

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4

a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)

\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)

\(=-3\left(x-1\right)^2+1< =1\)

Dấu '=' xảy ra khi x=1

b: \(B=-\left(16x^2+8x-4\right)\)

\(=-\left(16x^2+8x+1-5\right)\)

\(=-\left(4x+1\right)^2+5< =5\)

Dấu '=' xảy ra khi x=-1/4

d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)

=>E<=1/2

Dấu '=' xảy ra khi x=-1

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

26 tháng 9 2016

a)1
b)6,25
c)7
d)281/64
e)5

2 tháng 4 2018

a) Đặt A = \(3x^2+6x+4\)

\(A=3\left(x^2+2x+1\right)+1\)

\(A=3\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)

Vậy Min A =1 khi x = -1

31 tháng 7 2017

@Nguyễn Huy Tú giúp em với em cần gấp !!

31 tháng 7 2017

đề yêu cầu làm gì?

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

21 tháng 7 2018

Đây nữaHỏi đáp Toán