\(\left|3\cdot x-6\right|\)+100

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

mấy cái đó từ công thức mà ra

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

b: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

2 tháng 7 2018

1,

\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

20 tháng 6 2018

a)x=1;2;-2(bạn nên tự giải)

b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x

=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)

=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x

=>x = 1/7680

c)=>4x - 2x = 6x - 3x

=>2x (2x-1)= 3x(2x-1)

=> 2x = 3x

=>x = 0

21 tháng 6 2018

ak mình nhầm

21 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}=\dfrac{a+b-c+b+c-a+c+a-b}{3a+3b+3c}=\dfrac{a+b+c+\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{3a+3b+3c}=\dfrac{a+b+c}{3\left(a+b+c\right)}=\dfrac{1}{3}\)

Khi đó:

\(\left\{{}\begin{matrix}\dfrac{a+b-c}{3c}=\dfrac{1}{3}\\\dfrac{b+c-a}{3a}=\dfrac{1}{3}\\\dfrac{c+a-b}{3b}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b-3c=3c\\3b+3c-3a=3a\\3c+3a-3b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6c\\3b+3c=6a\\3c+3a=6b\end{matrix}\right.\)Thay vào \(P\)

\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(\dfrac{a+b}{a}\right)\left(\dfrac{c+a}{c}\right)\left(\dfrac{b+c}{b}\right)\)

\(27P=3\left(\dfrac{a+b}{a}\right).3\left(\dfrac{c+a}{c}\right).3\left(\dfrac{b+c}{b}\right)\)

\(27P=\left(\dfrac{3a+3b}{a}\right)\left(\dfrac{3c+3a}{c}\right)\left(\dfrac{3b+3c}{b}\right)\)

\(27P=\)\(\dfrac{6c}{a}.\dfrac{6b}{c}.\dfrac{6a}{b}=\dfrac{216abc}{abc}=216\Leftrightarrow P=\dfrac{216}{27}=8\)

22 tháng 10 2017

thank

7 tháng 12 2017

Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi

1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)

\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)

Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)

Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)

\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)

\(P=\dfrac{2+3+4+5+...+17}{2}\)

\(P=\dfrac{152}{2}=76\)

2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)

\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)

Bài 2:

a: =>x^2=60

=>\(x=\pm2\sqrt{15}\)

b: =>2^2x+3=2^3x

=>3x=2x+3

=>x=3

c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)

\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)

=>1/2x-2=4

=>1/2x=6

=>x=12