K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

$y^2+2y+4^x-2^{x+1}+2=0$

$\Leftrightarrow (y^2+2y+1)+(4^x-2.2^x+1)=0$

$\Leftrightarrow (y+1)^2+(2^x-1)^2=0$

$\Rightarrow (y+1)^2=(2^x-1)^2=0$

$\Rightarrow y=-1; x=0$

5 tháng 8 2020

Đề như này thì bạn phải thêm y^3 vào mới tính được giá trị biểu thức.

Mình thêm y^3 theo ý mình. Bạn xem thử nhé!

\(R=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)

\(\left(2x+y+y\right)^3=8\left(x+y\right)^3=8.50^3=...\)

7 tháng 9 2020


\(a,4\left(2-x\right)^2+xy-2y\)

\(=4\left(2-x\right)^2-y\left(2-x\right)\)

\(=4-y\left(2-x\right)^2\left(2-x\right)\)

\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)

\(=\left(2-x\right)\left(4x-8+y\right)\)

\(c,x^3+y^3+z^3-3xyz\)

\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)

\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

7 tháng 9 2020

a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)

b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]

= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)

c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz

= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)

= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)

31 tháng 8 2018

x + 2y = 3 => \(y=\dfrac{3-x}{2}\) (1)

Thay (10 vào E ta đc:

\(E=x^2+2.\left(\dfrac{x-3}{2}\right)^2\)

\(=x^2+\dfrac{x^2-6x+9}{2}\)

Nhân cả 2 vế của dẳng thức vs 2 ta đc:

\(2E=2x^2+x^2-6x+9\)

\(\Leftrightarrow2E=3x^2-6x+9\)

\(\Leftrightarrow2E=3\left(x^2-2x+1+2\right)\)

\(\Leftrightarrow E=\dfrac{3}{2}\left[\left(x-1\right)^2+2\right]\)

\(\Leftrightarrow E=\dfrac{3}{2}\left(x-1\right)^2+3\)

Vì: \(\dfrac{3}{2}\left(x-1\right)^2\ge0\)

\(\Rightarrow\dfrac{3}{2}\left(x-1\right)^2+3\ge3\)

Hay: \(E\ge3\)

Dấu = xảy ra khi: \(\dfrac{3}{2}\left(x-1\right)^2=0\Rightarrow x=1\)

Thay x =1 vào (1) ta đc: \(y=\dfrac{3-1}{2}=1\)

Vậy Min E = 3 tại x = y =1

=.= hok tốt!!

27 tháng 10 2022

I:
a: \(=x^2-2x+1+x^2-4x+4\)

\(=2x^2-6x+5\)

\(=2\left(x^2-3x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-3x+\dfrac{9}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu = xảy ra khi x=3/2

b: \(=-4\left(x^2-2x+\dfrac{3}{4}\right)\)

\(=-4\left(x^2-2x+1-\dfrac{1}{4}\right)=-4\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1