Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\sqrt{9\left(x-3\right)}-\sqrt{4\left(x-3\right)}=10+\frac{1}{2}\)
\(6\sqrt{\left(x-3\right)}-2\sqrt{\left(x-3\right)}=\frac{21}{2}\)
\(4\sqrt{\left(x-3\right)}=\frac{21}{2}\)
\(\sqrt{\left(x-3\right)}=\frac{21}{8}\)
\(x-3=\frac{441}{64}\)
\(x=\frac{633}{64}\)
ĐKXĐ\(x\ge3\)
<=>\(2\sqrt{9\left(x-3\right)}-\frac{1}{2}\sqrt{4\left(x-3\right)}=10\)
<>\(2.3\sqrt{x-3}-\frac{1}{2}.2\sqrt{x-3}=10\)
<=>\(5\sqrt{x-3}=10\)
<=>\(\sqrt{x-3}=2\)
<=>\(x-3=4\)
<=>\(x=7\)(TMĐKXĐ)
\(3x^4+4x^3-3x^2-2x+1=0\)
\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)
\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)
- \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)
\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)
- \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)
\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)
ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\x+\sqrt{2x-1}\ge0\\x-\sqrt{2x-1}\ge0\end{cases}}\)
<=>\(\hept{\begin{cases}x\ge\frac{1}{2}\\x+\sqrt{2x-1}\ge0\left(luondungvix\ge\frac{1}{2}\right)\\x\ge\sqrt{2x-1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2\ge2x-1\left(x\ge\frac{1}{2}>0\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2\ge0\left(luondung\right)\end{cases}}\)
\(\Leftrightarrow x\ge\frac{1}{2}\)
\(=11111111111111111...11123\) (123449 số 1)
11111111111111111...111123(123449 số 1)