Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ hai người sẽ có lần bắt tay nên có tất cả cái bắt tay
Theo đầu bài ta có:
C n 2 = 66 ⇔ n ! ( n - 2 ) ! . 2 ! = 66 ⇔ n ( n - 1 ) = 132 ⇔ n = 12 h o ặ c n = - 11 ( l o ạ i ) ⇒ n = 12 ( n ∈ N )
Chọn B.
Để sắp xếp số sách đó lên kệ và thỏa mãn đầu bài ta cần làm hai công việc sau:
Đầu tiên; đặt 3 nhóm sách ( toán; văn; anh) lên kệ có 3!=6 cách.
Sau đó; trong mỗi nhóm ta có thể thay đổi cách xếp các quyển sách với nhau:
Nhóm toán có 4!=24 cách.
Nhóm văn có 2!=2 cách.
Nhóm anh có 6!=720 cách.
Theo quy tắc nhân có : 6.24.2.720=207360 cách.
Chọn B.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Hàm xác định trên R khi và chỉ khi:
\(5sin4x-6cos4x+2m-1\ge0;\forall x\)
\(\Leftrightarrow5sin4x-6cos4x\ge1-2m;\forall x\)
\(\Leftrightarrow1-2m\le\min\limits_{x\in R}\left(5sin4x-6cos4x\right)\)
Ta có: \(\left(5sin4x-6cos4x\right)^2\le\left(5^2+\left(-6\right)^2\right)\left(sin^24x+cos^24x\right)=61\)
\(\Rightarrow5sin4x-6cos4x\ge-\sqrt{61}\)
\(\Rightarrow1-2m\le-\sqrt{61}\)
\(\Rightarrow m\ge\dfrac{1+\sqrt{61}}{2}\)