Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1/11+1/12+1/13+...+1/30
=(1/11+1/12+1/13+..+1/20)+(1/21+1/22+1/23+...+1/30)
\(\Rightarrow\)A<(1/10+1/10+1/10+...+1/10)+(1/20+1/20+1/20+...1/20)
\(\Rightarrow\)A<(1/10)*10+(1/20)*10
\(\Rightarrow\)A<1+1/2
\(\Rightarrow\)A<3/2<11/6
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}\)
\(=>A>\frac{65}{132}\)
#)Giải :
\(\frac{-5}{12}< \frac{a}{5}< \frac{1}{4}\Leftrightarrow\frac{-25}{60}< \frac{12a}{60}< \frac{15}{60}\Leftrightarrow-25< 12a< 15\)
\(\Leftrightarrow12a\in\left\{\pm12;-24\right\}\)
\(\Leftrightarrow a\in\left\{\pm1;2\right\}\)
Bài giải
Ta có :
\(-\frac{5}{12}< \frac{a}{5}< \frac{1}{4}\)
\(\Leftrightarrow\text{ }-\frac{25}{60}< \frac{12a}{60}< \frac{15}{60}\) \(\Rightarrow\text{ }-25< 12a< 15\)
\(\Rightarrow\text{ }-1,25< a< 1,25\)
\(\text{Do }a\in Z\text{ }\Rightarrow\text{ }x\in\left\{-1\text{ ; }0\text{ ; }1\right\}\)
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).
Ta có :
\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}.\frac{1}{225}\)
\(H=\frac{1}{60}\)
Vậy \(H=\frac{1}{60}\)
Chúc bạn học tốt ~
\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)
\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)
\(H=15\cdot\frac{1}{900}\)
\(H=\frac{1}{60}\)
Bài 1 :
36/1212 = 3/101
13/1313 = 1/101
3/101 + 1/101 = 4/101
Vậy 36/1212 + 13/1313 = 4/101.
Bài 2 :
A = 5/13 + 1/2 + -5/9 + -3/6 + 4/-9
A = 5/13 + 1/2 + -5/9 + -1/2 + -4/9
A = (1/2 + -1/2) + (-5/9 + -4/9) + 5/13
A = 0 + (-1) + 5/13
A = (-1) + 5/13 = -13/13 + 5/13 = 8/13.
Chúc bạn học giỏi nhé.
=>A:1/2=1/1x3+1/3x5+1/5x7+...+1/99x101
=>2a=1/2(2/1x3+2/3x5+...+2/99x101)
từ đây tự làm
\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(\Rightarrow2A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(\Rightarrow2A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(\Rightarrow4A=\frac{100}{101}\)
\(\Leftrightarrow A=\frac{100}{101}.\frac{1}{4}=\frac{4.25}{101.4}=25< 26\)
\(\frac{3}{1}+\frac{4}{5}=\frac{15}{5}+\frac{4}{5}=\frac{19}{5}\)
19/5 nha bn mk kb ròi cảm ơn nhìu