Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3x\right)^3=\left(-2x\right)^3=-8x^3\)
Hệ số của hạng tử bậc là 3 là -8
\(A=\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)-18\)
\(=\frac{1}{4}\left[\left(2x+1\right)\left(x+1\right)^2.4\left(2x+3\right)\right]-72\)
\(=\frac{1}{4}\left[\left(2x+1\right)\left(2x+3\right)\left(2x+2\right)^2\right]-72\)
\(=\frac{1}{4}\left[\left(4x^2+8x+3\right)\left(4x^2+8x+4\right)-72\right]\)
Đặt: \(4x^2+8x+3=t\)
Ta có: \(A=\frac{1}{4}\left[t^2+t-72\right]\)
\(=\frac{1}{4}\left[\left(t+9\right)\left(t-8\right)\right]\)
\(=\frac{1}{4}\left[\left(4x^2+8x+12\right)\left(4x^2+8x-5\right)\right]\)
\(=\left(x^2+2x+3\right)\left[4x^2+8x-5\right]\)
\(=\left(x^2+2x+3\right)\left(2x-1\right)\left(2x+5\right)\)
\(B=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=a\)
Khi đó: \(B=a\left(a-3\right)-4\)
\(=a^2-3a-4=\left(a+1\right)\left(a-4\right)\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=x^4+x^2+4-2x^3-4x+4x^2+x^2-4x+4\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=x^4-2x^3+2x^2+4x^2-8x+8\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)=\left(x^2-2x+2\right)\left(x^2+4\right)\)
\(3x^4-5x^3-18x^2-3x+5\)
\(=3x^4+x^3-x^2-6x^3-2x^2+2x-15x^2-5x+5\)
\(=x^2\left(3x^2+x-1\right)-2x\left(3x^2+x-1\right)-5\left(3x^2+x-1\right)\)
\(=\left(3x^2+x-1\right)\left(x^2-2x-5\right)\)
Bài này thật sự khó và hay đấy.
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(\left(3x-5\right)^2=\left(3x\right)^2-2.3x.5+5^2=9x^2-30x+25\)
=> Hạng tử bậc nhất là 30
1/5x * (-5x) = -x^2
-3 * 3x^2 = -9x^2
Tổng : -10x^2
=> Hệ số của hạng tử bậc 2 của tích là: -10
1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)
\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)
\(=20x^2-41x+20+5x^2+19x-4+9x-4\)
\(=25x^2-13x+10\)
2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)
\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)
\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)
\(=15x^2-42x+24\)
\(\left(1\right)\Leftrightarrow2x-3x^2+11-33x=6x-4-15x^2+10x\)
\(\Leftrightarrow12x^2-47x+15=0\)
\(\Delta=47^2-4.12.15=1489,\sqrt{\Delta}=\sqrt{1489}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{47+\sqrt{1489}}{24}\\x=\frac{47-\sqrt{1489}}{24}\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{\left(x-3\right)^2-\left(x+3\right)^2}{x^2-9}=\frac{-5}{x^2-9}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x+3\right)^2=-5\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9=-5\)
\(\Leftrightarrow-12x=-5\Leftrightarrow x=\frac{5}{12}\)