Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là D
Gọi phương trình đường thẳng cần tìm là y = ax + b
Đường thẳng đi qua 2 điểm P(1; 3 + 2 ) và Q( 3 ; 3 + 2 ) nên ta có:
⇒ 3 - 3 = 3 a - a ⇔ 3 ( 3 - 1) = a( 3 - 1) ⇔ a = 3
Vậy hệ số góc của đường thẳng cần tìm là 3
Đường thẳng (d): y = (m + 1)x - 7 đi qua điểm có A(-1; 3).
\(\Rightarrow\) \(\text{3 = (m + 1).(-1) - 7.}\)
\(\Leftrightarrow\) \(\text{m + 1 = -10.}\)
\(\Rightarrow\) Hệ số góc của đường thẳng (d) là: \(-10.\)
\(\Rightarrow\) Chọn \(B.-10.\)
Phương trình đường thẳng cần tìm có hệ số góc là \(-\frac{1}{2}\)nên có dạng \(y=-\frac{1}{2}x+a\)
Phương trình hoành độ giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là: \(x+3=2x-1\)\(\Leftrightarrow x=4\)
\(\Rightarrow y=x+3=4+3=7\)
Vậy giao điểm của \(\left(d_1\right)\&\left(d_2\right)\)là điểm \(\left(4;7\right)\)
Mà \(\left(d\right):y=-\frac{1}{2}x+a\)đi qua điểm \(\left(4;7\right)\)nên ta thay \(x=4;y=7\)vào hàm số, ta có:
\(7=-\frac{1}{2}.4+a\)\(\Leftrightarrow a=9\)
Vậy phương trình đường thẳng cần tìm là \(\left(d\right):y=-\frac{1}{2}x+9\)
Vì (d) có hệ số góc bằng -1/2 nên a=-1/2
Vậy: (d): y=-1/2x+b
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x-1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Thay x=4 và y=7 vào (d), ta được: b-2=7
hay b=9
a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)
Suy ra: (d): y=3x+b
Thay x=2 và y=-2 vào (d), ta được:
\(3\cdot2+b=-2\)
\(\Leftrightarrow b=-8\)(thỏa ĐK)
Vậy: (d): y=3x-8
b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)
hay \(a=-\dfrac{1}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+b\)
Thay x=-3 và y=4 vào (d), ta được:
\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)
\(\Leftrightarrow b+\dfrac{3}{2}=4\)
hay \(b=\dfrac{5}{2}\)
Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)
Chọn D