Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(9-5x)(8-3x)`
`= 9 (8-3x)-5x (8-3x)`
`= 72 - 27x - 40x +15x^2`
`= 15x^2 -67x +72`
Hệ số cao nhất : `15`
hệ số cao nhất trong các tích (9-5x) (8-3x) là 40
\(C=x^4-x^3+2x^2-11x-5\)
\(=x^4+x^3+5x^2-2x^3-2x^2-10x-x^2-x-5\)
\(=x^2\left(x^2+x+5\right)-2x\left(x^2+x+5\right)-\left(x^2+x+5\right)\)
\(=\left(x^2+x+5\right)\left(x^2-2x-1\right)\)
Bài này phải dùng phương pháp hệ số bất định (bài này khó)
C có dạng \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất với đa thức C thì phải giải 4 cái sau:
\(a+c=-1\left(1\right),ac+b+d=2\left(2\right),ad+bc=-11\left(3\right),bd=-5\left(4\right)\)
Giải (4) trước (vì \(b,d\in Z\)
Rồi thay vào thử tìm a,c (hơi lâu vì bài này trong 4 ước chỉ tìm được duy nhất 1 giá trị của b và d)
Lời giải thích trên hơi khó hiểu đúng ko? Chúc bạn học tốt.
a) \(A=x^4-6x^3+11x^2-6x+1\)
\(A=\left(x^4-3x^3+x^2\right)-\left(3x^3-9x^2+3x\right)+x^2-3x+1\)
\(A=x^2\left(x^2-3x+1\right)-3x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)\)
\(A=\left(x^2-3x+1\right)^2\)
b) \(B=x^4-x^3+2x^2-11x-5\)
\(B=x^2\left(x^2-2x-1\right)+x\left(x^2-2x-1\right)+5\left(x^2-2x-1\right)\)
\(B=\left(x^2-2x-1\right)\left(x^2+x+5\right)\)
Giả sử (x-a)(x-1995)+3=(x+b)(x+c)
Khi x = 1995 --> (1995+b)(1995+c)=3
Th1: 1995+b=1 và 1995+c=3
--> b=-1994; c=-1992
--> (x-a)(x-1995)+3=(x-1994)(x-1992)
--> a=1991
Th2: 1995+b=-1 và 1995+c=-3
(Bạn làm tương tự để tìm b và c, từ đó thế vào tìm được a)
(9-x)(8-x) = 72 -8x -9x +x^2
=x^2 - 17x+72
Hệ số cao nhất là : 1
Ta có:
\(\left(9-x\right)\left(8-x\right)\)
\(=72-9x-8x+x^2\)
\(=72-17x+x^2\)
Vậy hệ số cao nhất trong tích đó là hệ số 1