K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

Chọn đáp án B

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ Hệ phương trình đã cho vô nghiệm ⇒ S = ∅

Cách 2: Ta thấy: Đề kiểm tra Toán 9 | Đề thi Toán 9 ⇒ Hệ pt vô nghiệm

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

9 tháng 1 2016

a)Với y=1 ta có hpt:

\(\int^{2x+3=3+m}_{x+2=m}\Leftrightarrow\int^{2x=m}_{x+2=2x}\Leftrightarrow\int^{2.2=m}_{x=2}\Leftrightarrow\int^{m=4}_{x=2}\)

Vậy nghiệm của hpt là (2;1) khi m=4

b)đợi suy nghĩ

 

9 tháng 2 2020

\(Đkxđ:\hept{\begin{cases}x\ge2\\y\ge2\end{cases}}\)

Ta thấy các vế đều \(\ge0\)nên ta bình phương các vế ta được:

\(\Leftrightarrow\hept{\begin{cases}x+y+3+2\sqrt{\left(x+5\right)\left(y-2\right)}=49\\x+y+3+2\sqrt{\left(x-2\right)\left(y+5\right)}=49\end{cases}}\)

Trừ từng vế ta được: 

\(\sqrt{\left(x+5\right)\left(y-2\right)}=\sqrt{\left(x-2\right)\left(y+5\right)}\)

\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=\left(x-2\right)\left(y+5\right)\)

\(\Leftrightarrow xy+5y-2x-10=xy+5x-2y-10\)

\(\Leftrightarrow x=y\)

Thay vào một trong hai pt trên ta được:

\(2x+3+2\sqrt{x^2+3x-10}=49\)

\(\Leftrightarrow\sqrt{x^2+3x-10}=23-x\Leftrightarrow\hept{\begin{cases}x\le23\\x^2+3x-10=\left(23-x\right)^2\end{cases}}\Leftrightarrow x=11\)

Vậy hpt có nghiệm là: \(x=y=11\)

19 tháng 7 2015

pt thứ 1 <=> (x+y)2 - 3xy = 19

Pt thứ 2 <=> x+ y = -7 - xy. Thế vào pt (1) ta được:

(-7 - xy)2 - 3xy = 19

<=> 49 + 14xy + (xy)2 - 3xy = 19

<=> (xy)2 + 11xy + 30 = 0

<=> (xy)2 + 5xy + 6xy + 30 = 0 <=> (xy + 5).(xy + 6) = 0 <=> xy = -5 hoặc xy = -6

+) xy = -5 => x+ y = -2 => x = -2 - y => xy = -(y +2).y = -5 <=> y2 + 2y - 5 = 0 <=> (y+1)2 - 6 = 0 

<=> y + 1 = \(\sqrt{6}\) hoặc y + 1 = - \(\sqrt{6}\) 

=> y = \(\sqrt{6}\) - 1 ; x = -1 - \(\sqrt{6}\) 

y = - \(\sqrt{6}\) -1 => x = -1 + \(\sqrt{6}\)

+) xy = -6 => x + y = -1 => x = -y - 1 => xy = -(y+1).y = -6 => y2 + y - 6 = 0 <=> y2 + 3y - 2y - 6 = 0 

<=> (y - 2)(y +3) = 0 <=> y = 2 hoặc y = -3

Với y = 2 => x = -3

với y = -3 => x = 2

Vậy hệ có 4 nghiệm....

5 tháng 3 2020

từ ptt 2

=>x=4-my

thay vào pt 1 ta đc:

m(4-my)+4y=10-m

=>4m-m^2y+4y=10-m

=> m^2y-4y+10-5m=0

no duy nhất x,y nên pt trên cs 1 no

=> đenta phẩy  =0

=> 4-y(-5m)=0

5+5ym=0

=>ym=0

=>y=0

vậy đpcm

5 tháng 3 2020

ak nhầm,

m^2y-4y+10-5m=0

=> denta =25-4y(-4y+10)=0

=>25+16y^2-40y=0

=>16y^2-40y+ 25=0

y=1.25

=> đpcm

vô lý

21 tháng 6 2015

3, y nhỏ nhất khi y^2 nhỏ nhất

y^2 = \(x+2\sqrt{x-1}+x-2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}\)

     = \(2x+2\sqrt{x^2-4x+4}=2x+2\sqrt{\left(x-2\right)^2}=2x+2!x-2!\)

(Đến đây thì chịu rồi)

21 tháng 6 2015

A^2 = \(2+\frac{\sqrt{7}}{2}+2-\frac{\sqrt{7}}{2}-2\sqrt{\left(2+\frac{\sqrt{7}}{2}\right)\left(2-\frac{\sqrt{7}}{2}\right)}\)

A^2 = \(4\) \(-2\sqrt{4-\frac{7}{4}}=\)  \(4-2\sqrt{\frac{9}{4}}=4-2\cdot\frac{3}{2}=4-3=1\)

=> A = 1

22 tháng 8 2019

1.

a.\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0\left(\forall m\in R\right)\)

b.Gia su 2 nghiem cua PT la \(x_1,x_2\left(x_1>x_2\right)\)

Theo de bai ta co;\(x_1-x_2=17\)

Tu cau a ta co:\(x_1=\frac{-4m-1+\sqrt{16m^2+33}}{2}\) \(x_2=\frac{-4m-1-\sqrt{16m^2+33}}{2}\)

\(\Rightarrow\frac{-4m-1+\sqrt{16m^2+33}}{2}-\frac{-4m-1-\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow\frac{2\sqrt{16m^2+33}}{2}=17\)

\(\Leftrightarrow16m^2+33=289\)

\(\Leftrightarrow m=4\)

22 tháng 8 2019

2.

a.\(\Delta'=\left(m-1\right)^2-\left(m+2\right)\left(3-m\right)=2m^2-3m-5=\left(m+1\right)\left(2m-5\right)>0\)

TH1:\(\hept{\begin{cases}m+1>0\\2m-5>0\end{cases}\Leftrightarrow m>\frac{5}{2}}\)

TH2:\(\hept{\begin{cases}m+1< 0\\2m-5< 0\end{cases}\Leftrightarrow m< -1}\)

Xet TH1:\(x_1=\frac{-m+1+\sqrt{2m^2-3m-5}}{m+2}\) \(x_2=\frac{-m+1-\sqrt{2m^2-3m-5}}{m+2}\)

Ta co:\(x^2_1+x^2_2=x_1+x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=x_1+x_2\)

\(\Leftrightarrow\left(\frac{-2m+2}{m+2}\right)^2-\frac{-m^2+5m+6}{\left(m+2\right)^2}=\frac{-2m+2}{m+2}\)

\(\Leftrightarrow\frac{5m^2-13m-2}{\left(m+2\right)^2}=\frac{-2m^2-2m+4}{\left(m+2\right)^2}\)

\(\Rightarrow7m^2-11m-6=0\)

\(\Delta_m=121+168=289>0\)

\(\Rightarrow\hept{\begin{cases}m_1=2\left(l\right)\\m_2=-\frac{3}{7}\left(l\right)\end{cases}}\) 

TH2;Tuong tu 

Vay khong co gia tri nao cua m de PT co 2 nghiem thoa man \(x^2_1+x^2_2=x_1+x_2\)