Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)
b) Ta có: \(7x^2-2x+3=0\)
a=7; b=-2; c=3
\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)
Suy ra: Phương trình vô nghiệm
Vậy: \(S=\varnothing\)
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
Hệ tương đương với x y x + y x + y + x y = 30 x y x + y + x + y + x y = 11
Đặt xy (x + y) = a; xy + x + y = b. Ta thu được hệ:
a b = 30 a + b = 11 ⇔ a = 5 ; b = 6 a = 6 ; b = 5 ⇔ x y x + y = 5 x y + x + y = 6 x y x + y = 6 x y + x + y = 5
TH1: x y x + y = 6 x y + x + y = 5
⇔ x y = 2 x + y = 3 x y = 3 x + y = 2 ( L ) ⇔ x = 2 ; y = 1 x = 1 ; y = 2
TH2: x y x + y = 5 x y + x + y = 6
⇔ x y = 5 x + y = 1 L x y = 1 x + y = 5 ⇔ x = 5 − 21 2 ; y = 5 + 21 2 x = 5 + 21 2 ; y = 5 − 21 2
Vậy hệ có nghiệm (x; y) = (1; 2), (2; 1), 5 ± 21 2 ; 5 ∓ 21 2
Suy ra có một cặp nghiệm thỏa mãn đề bài là 5 − 21 2 ; 5 + 21 2
Đáp án:D