K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2018

Ta có: 2 x − y = 5 ⇒ y = 2 x − 5

Thay y = 2 x − 5 vào phương trình dưới ta được:  x − 1 + 2 x − 5 = 0

⇔ 5 − 2 x ≥ 0 x − 1 = 5 − 2 x x − 1 = − 5 + 2 x ⇔ x ≤ 5 2 3 x = 6 − x = − 4 ⇔ x ≤ 5 2 x = 2 x = 4

⇔ x = 2 ⇒ y = − 1

Đáp án cần chọn là: B

25 tháng 11 2017

Chú ý. Đối với những hệ phương trình có hệ số thập phân như thế này ta nên nhân với 10 để có hệ phương trình hệ số nguyên:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Thay vào ta thấy phương án A sai, còn phương án B đúng. Vậy đáp án là B.

Đáp án: B

 

a: Thay x=-1 và y=2 vào 2x-y+3, ta được:

\(2x-y+3=-2-2+3=-1< 0\)

=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0

b:

-x+2+2(y-2)<2(2-x)(1)

=>-x+2+2y-4<4-2x

=>-x+2y-2-4+2x<0

=>x+2y-6<0

Thay x=-1 và y=2 vào x+2y-6, ta được:

 \(x+2y-6=-1+4-6=-3< 0\)

=>(-1;2) là nghiệm của bất phương trình (1)

c: Thay x=-1 và y=2 vào x-y-15, ta được:

\(x-y-15=-1-2-15=-18< 0\)

=>(-1;2) là nghiệm của bất phương trình x-y-15<0

d: 3(x-1)+4(y-2)<5x-3(2)

=>3x-3+4y-8<5x-3

=>3x+4y-11-5x+3<0

=>-2x+4y-8<0

=>x-2y+4>0

Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)

=>(-1;2) không là nghiệm của bất phương trình (2)

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là A.∅      B.R       C.R\{2}            D.[3;+∞)Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)A.2     B.3         C.4         D.5Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)     ...
Đọc tiếp

Câu 1: Tập xác định của hàm số y=3x2+2x+2 là 

A.∅      B.R       C.R\{2}            D.[3;+∞)

Câu 2: Hệ phương trình sau có bao nhiêu nghiệm thực:\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-6y=7\end{matrix}\right.\)

A.2     B.3         C.4         D.5

Câu 3: Hệ phương trình \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=13\\\dfrac{3}{x}+\dfrac{2}{y}=12\end{matrix}\right.\)có nghiệm là:

A. x=\(\dfrac{1}{2}\);x=\(-\dfrac{1}{3}\)      B.x=\(\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)      C.x=\(-\dfrac{1}{2}\);y=\(\dfrac{1}{3}\)

 D. Hệ vô nghiệm

Câu 4: Cho hệ:\(\left\{{}\begin{matrix}\dfrac{3}{x-1}+\dfrac{4}{y-2}=1\\\dfrac{1}{x-1}-\dfrac{2}{y-2}=2\end{matrix}\right.\) nếu đặt a=\(\dfrac{1}{x-1}\);b=\(\dfrac{1}{y-2}\)(x≠1;y≠2) hệ trở thành 

A.\(\left\{{}\begin{matrix}3a+4b=1\\a-2b=2\end{matrix}\right.\)       B.\(\left\{{}\begin{matrix}3a-4b=1\\a-2b=2\end{matrix}\right.\)      C.\(\left\{{}\begin{matrix}3a+4b=1\\a+2b=2\end{matrix}\right.\)        D.\(\left\{{}\begin{matrix}3a-4b=1\\a+2b=2\end{matrix}\right.\)

Câu 5: Hệ phương trình sau có bao nhiêu nghiệm (x;y): \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{4}{x}+\dfrac{6}{y}=6\end{matrix}\right.\)

A.0       B.1          C.2              D.Vô nghiệm

Câu 6: Tìm nghiệm (x;y) của hệ :\(\left\{{}\begin{matrix}x-y=1\\2x+y-z=2\\y+z=3\end{matrix}\right.\)

A.(\(\dfrac{7}{4};\dfrac{3}{4};\dfrac{9}{4}\))          B.(\(-\dfrac{7}{4};\dfrac{3}{4};-\dfrac{9}{4}\))      C.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))       D.(\(\dfrac{7}{4};-\dfrac{3}{4};-\dfrac{9}{4}\))   

Câu 7: Hệ phương trình:\(\left\{{}\begin{matrix}x+y=2\\x+2z=3\\y+z=2\end{matrix}\right.\) có nghiệm là?

A.(1;1;1)     B.(2;2;1)        C.(-1;1;2)      D.(1;2;1)

Câu 8: Cho tam giác ABC có a2+b2>c2 khi đó 

A.Góc C>90o      B. Góc C<90o      C. Góc C=90o    D. Không thể kết luận được gì về góc 

C

Câu 9 : Tập nghiệm bất phương trinh x2<0

A.R    B.∅       C.(-1;0)       D.(-1;+∞)

Câu 10: Tập nghiệm của bất phương trình (x+1)2≥0

A.R       B.∅      C.(-1;0)        D.(-1;+∞)

 

1
2 tháng 2 2021

Chọn D.

 

 

Chọn A.

 

 

Chọn D.

 

 

Chọn A.

 

 

Chọn A.

mình chỉ biết làm đến đây thôi @@

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3

Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)

Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)

Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).

Chọn A

24 tháng 9 2023

Tham khảo:

a) Vẽ đường thẳng \(\Delta : - 2x + y - 1 = 0\) đi qua hai điểm \(A(0;1)\) và \(B\left( { - 1; - 1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 - 1 =  - 1 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

b) Vẽ đường thẳng \(\Delta : - x + 2y = 0\) đi qua hai điểm \(O(0;0)\) và \(B\left( {2;1} \right)\)

Xét điểm \(A(1;0).\) Ta thấy \(A \notin \Delta \) và \( - 1 + 2.0 =  - 1 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), không chứa điểm A (1;0)

(miền không gạch chéo trên hình)

c) Vẽ đường thẳng \(\Delta :x - 5y = 2\) đi qua hai điểm \(A(2;0)\) và \(B\left( { - 3; - 1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 - 5.0 = 0 < 2\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

d) Vẽ đường thẳng \(\Delta : - 3x + y + 2 = 0\) đi qua hai điểm \(A(0; - 2)\) và \(B\left( {1;1} \right)\)

Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 3.0 + 0 + 2 = 2 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(\Delta \), không chứa điểm O (0;0)

(miền không gạch chéo trên hình)

e) Ta có:  \(3(x - 1) + 4(y - 2) < 5x - 3 \Leftrightarrow  - 2x + 4y - 8 < 0 \Leftrightarrow  - x + 2y - 4 < 0\)

Vẽ đường thẳng \(\Delta : - x + 2y -4 = 0\) đi qua hai điểm \(A(0;2)\) và \(B\left( {-4;0} \right)\)

Xét điểm \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 0 + 2.0 -4 = -4 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(\Delta \), chứa điểm O (0;0)

(miền không gạch chéo trên hình)

15 tháng 12 2020

Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(\left|a\right|\ge2;\left|b\right|\ge2\right)\)

\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x^3+\dfrac{1}{x^3}\right)+\left(y^3+\dfrac{1}{y^3}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)^3-3\left(y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)=15m-25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=5\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\a^3+b^3=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\\left(a+b\right)^3-3ab\left(a+b\right)=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\125-15ab=15m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\ab=9-m\end{matrix}\right.\)

\(\Rightarrow a,b\) là nghiệm của phương trình \(t^2-5t+9-m=0\left(1\right)\)

a, Nếu \(m=3\), phương trình \(\left(1\right)\) trở thành

\(t^2-5t+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y^2-3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3\pm\sqrt{5}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=3\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3\pm\sqrt{5}}{2}\\y=1\end{matrix}\right.\)

Vậy ...

b, \(\left(1\right)\Leftrightarrow t=\dfrac{5\pm\sqrt{4m-11}}{2}\left(m\ge\dfrac{11}{4}\right)\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5\pm\sqrt{4m-11}}{2}\\b=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{5\pm\sqrt{4m-11}}{2}\\y+\dfrac{1}{y}=\dfrac{5\mp\sqrt{4m-11}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(5\pm\sqrt{4m-11}\right)+2=0\left(2\right)\\2y^2-\left(5\mp\sqrt{4m-11}\right)+2=0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(2\right)\) có nghiệm dương

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(5\pm\sqrt{4m-11}\right)^2-16\ge0\\\dfrac{5\pm\sqrt{4m-11}}{2}>0\\1>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

31 tháng 1 2019

Đáp án: D