Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}x>2\\\frac{5}{2}+3\le x+\frac{3}{2}x\\2x\le5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>2\\\frac{5}{2}x\ge\frac{11}{2}\\x\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\frac{11}{5}\le x\le\frac{5}{2}\)
\(\Rightarrow a+b=\frac{11}{5}+\frac{5}{2}=D\)
2.
\(\left\{{}\begin{matrix}6x-4x>7-\frac{5}{7}\\4x-2x< 25-\frac{3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\frac{22}{7}\\x< \frac{47}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{22}{7}< x< \frac{47}{4}\Rightarrow x=\left\{4;5...;11\right\}\) có 8 giá trị
3.
\(\left\{{}\begin{matrix}5x-4x< 5+2\\x^2< x^2+4x+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 7\\x>-1\end{matrix}\right.\)
\(\Rightarrow-1< x< 7\Rightarrow x=\left\{0;1;...;6\right\}\)
\(\Rightarrow\sum x=1+2+...+6=21\)
4.
\(\left\{{}\begin{matrix}x^2-2x+1\le8-4x+x^2\\x^3+6x^2+12x+8< x^3+6x^2+13x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x\le7\\x\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le x\le\frac{7}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x_{min}=-1\\x_{max}=3\end{matrix}\right.\) \(\Rightarrow S=2\)
5.
\(\left\{{}\begin{matrix}x>\frac{1}{2}\\x< m+2\end{matrix}\right.\)
Hệ đã cho có nghiệm khi và chỉ khi:
\(m+2>\frac{1}{2}\Rightarrow m>-\frac{3}{2}\)
\(x-2\ge0\Rightarrow x\ge2\)
\(\left(m^2+1\right)x< 4\Leftrightarrow x< \frac{4}{m^2+1}\) (do \(m^2+1>0\) \(\forall m\))
Để hệ có nghiệm
\(\Leftrightarrow\frac{4}{m^2+1}>2\Rightarrow m^2+1< 2\Rightarrow m^2< 1\)
\(\Rightarrow-1< m< 1\)
lời giải
a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)
(1)\(\Leftrightarrow\)
\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)
\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)
Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)
(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)
Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
\(\frac{\left(x-\sqrt{2}\right)\left(2-2x\right)}{\left(2x-1\right)\left(x+2\right)}>0\Leftrightarrow\left[{}\begin{matrix}-2< x< \frac{1}{2}\\1< x< \sqrt{2}\end{matrix}\right.\)
a/ \(-x>2\Rightarrow x< -2\)
\(\Rightarrow\) Hệ BPT vô nghiệm
b/ \(m=0\) hệ vô nghiệm
Để hệ đã cho có nghiệm
- Với \(m>0\Rightarrow x>\frac{2}{m}\)
\(\Rightarrow\frac{2}{m}< \sqrt{2}\Rightarrow m< \sqrt{2}\Rightarrow0< m< \sqrt{2}\)
- Với \(m< 0\Rightarrow x< \frac{2}{m}\)
\(\Rightarrow\frac{2}{m}>-2\Rightarrow m< -1\)
Vậy để hệ có nghiệm thì: \(\left[{}\begin{matrix}0< m< \sqrt{2}\\m< -1\end{matrix}\right.\)
a) \(x^2\ge4x\)(1)
Nếu \(\left[{}\begin{matrix}x_1=0\\x_2=4\end{matrix}\right.\) \(\Rightarrow VT=VP\)
Nếu \(x< 0\Rightarrow VT>0;VP< 0\)=> \(VT>VP\)
Nếu 0<x<4 \(\Rightarrow VT< VP\)
nếu x> 4\(\Rightarrow VT>VP\)
Kết luận nghiệm BPT (1): \(\left[{}\begin{matrix}x\le0\\x\ge4\end{matrix}\right.\)
b)
(1) \(\Rightarrow\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)
(2) \(\Rightarrow-2\le x\le3\)
KL nghiệm
\(\left[{}\begin{matrix}-2\le x< \dfrac{3-\sqrt{5}}{2}\\\dfrac{3+\sqrt{5}}{2}< x\le3\end{matrix}\right.\)
a)\(Bpt\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-4x\ge0\left(1\right)\\\left(2x-1\right)^2-9>0\left(2\right)\end{matrix}\right.\)
Giải (1): \(x^2-4x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le0\end{matrix}\right.\)
Giải (2): \(\left(2x-1\right)^2-9=\left(2x-1\right)^2-3^2=\left(2x-4\right)\left(2x+2\right)\)
\(\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vì vậy: \(\left(2x-1\right)^2-9< 0\Leftrightarrow-1< x< 2\).
Kết hợp điều kiện \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(-1< x\le0\) thỏa mãn hệ bất phương trình.