Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ cần nghiệm lớn hơn của pt nằm trong \(\left(1;+\infty\right)\) là đủ rồi bạn
Khi đó luôn có 1 khoảng \(\left(1;x_2\right)\) mang dấu âm
Trường hợp \(1< x_1< x_2\) cũng nằm trong trường hợp này nên ko cần xét
Lê Thị Trang
\(x-1>0\Rightarrow x>1\)
Để hệ BPT có nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-1\ge0\\x_2=m+\sqrt{m^2-1}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\\\sqrt{m^2-1}>1-m\left(1\right)\end{matrix}\right.\)
Xét (1):
- Với \(m=1\) ko thỏa mãn
- Với \(m>1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(m\le-1\) hai vế ko âm, bình phương:
\(m^2-1\ge m^2-2m+1\Leftrightarrow m\ge1\) (ktm)
Vậy mới \(m>1\) thì BPT đã cho có nghiệm
\(x-1>0\Rightarrow x>1\)
Xét \(x^2-2mx+1\le0\)
TH1: \(\left\{{}\begin{matrix}\Delta'=m^2-1=0\\-\frac{b}{2a}=m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'=m^2-1>0\\m-\sqrt{m^2-1}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1>0\\m-1>\sqrt{m^2-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-1\right)^2>m^2-1\end{matrix}\right.\)
\(\Rightarrow m>1\)
\(\hept{\begin{cases}x+m\le0\\-x+5< 0\end{cases}\hept{\begin{cases}x\le-m\\x< -5\end{cases}\hept{\begin{cases}x\in\left(-\infty;-m\right)\\x\in\left(-\infty;-5\right)\end{cases}}}}\)bạn sửa lại chỗ trên nha là nửa khoảng
\(+-m\ge-5\)
\(m\le5< =>\)tập nghiệm của HPT \(S=\left(-m;-\infty\right)\)
\(+-m< 5\)
\(m>5< =>\)tập nghiệm của HPT \(S=\left\{-\infty;-5\right\}\)
\(\left\{{}\begin{matrix}2x-1>0\\x-m< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x< m+2\end{matrix}\right.\)
Hệ có nghiệm khi \(m+2>\dfrac{1}{2}\Rightarrow m>-\dfrac{3}{2}\)
\(x-2\ge0\Rightarrow x\ge2\)
\(\left(m^2+1\right)x< 4\Leftrightarrow x< \frac{4}{m^2+1}\) (do \(m^2+1>0\) \(\forall m\))
Để hệ có nghiệm
\(\Leftrightarrow\frac{4}{m^2+1}>2\Rightarrow m^2+1< 2\Rightarrow m^2< 1\)
\(\Rightarrow-1< m< 1\)
Loại trừ đi những gì ko thỏa mãn thì còn lại là thỏa mãn
\n\nĐể pt có 2 nghiệm pb và ít nhất 1 nghiệm lớn hơn 1, trước hết phải có điều kiện \\(\\Delta>0\\)
\n\nKhi đã thỏa mãn \\(\\Delta\\) , có hai cách giải quyết:
\n\n1/ Tìm m thỏa mãn 1 trong 2 điều kiện \\(\\left[{}\\begin{matrix}x_1< 1< x_2\\\\1< x_1< x_2\\end{matrix}\\right.\\)
\n\nCách này cần chia 2 TH giải
\n\n2/ Loại trừ đi những m thỏa mãn \\(x_1< x_2\\le1\\) (gọi là phương pháp phần bù)
\n\nSử dụng cách 2 thì chỉ cần làm 1 lần. Nhưng lưu ý khi sử dụng cách này cần thành thạo quy tắc trừ tập hợp.
\n\(x-1>0\Rightarrow x>1\)
Xét \(f\left(x\right)=x^2-2mx+1\le0\)
Do \(a=1>0\), để BPT có nghiệm thì
TH1: \(\left\{{}\begin{matrix}\Delta'=0\\-\frac{b}{2a}>1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m>1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
TH2: \(f\left(x\right)=0\) có 2 nghiệm pb và ít nhất 1 nghiệm lớn hơn 1
\(\Delta'=m^2-1>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Để \(f\left(x\right)=0\) có 2 nghiệm thỏa \(x_1< x_2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-2m\ge0\\2m< 2\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Vậy BPT đã cho có nghiệm khi \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)