K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

@ngonhuminh

3 tháng 4 2017

a) tứ giác ABKC là hình thang vuông.

có AC vuông góc với AB, BK vuông góc góc AB

=> AC song song với BK (từ vuông góc đến song song)

=> tứ giác ACKB là hình thang và có góc CAB =900 (gt)

=> tứ giác ACKB là hình thang vuông

b) Theo câu a) ACKB là hình thang => AC song song với KB

=> góc CAK = góc AKB (so le trong)

Xét tam giác ABK và tam giác CHA có:

góc CAK = góc AKB (CM/trên)

và góc ABK = góc CHA (=900)

=> tam giác ABK đồng dạng với tam giác CHA (g-g)

\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{AC}\Rightarrow AB.AC=AK.CH\)

c) Xét tam giác CAH thì có góc CAH = 900 - góc ACH (1)

Xét tam giác ABC thì góc ABC = 900 - góc ACH (2)

Từ (1)(2)=. góc CAH = góc ABC

Xét tam giác CAH và tam giác ABH có:

góc CAH = góc HBA (CM/trên)

và góc CHA = góc AHB (=900)

=> tam giác CAH đồng dạng với tam giác ABH (g-g)

=> \(\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=CH.BH\)

d) Theo câu c) ta có \(AH^2=BH.CH\) thay số vào ta được:

\(AH^2=9.16=144\Rightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác AHB ta có:

\(AB^2=AH^2+HB^2=12^2+9^2=225\Rightarrow AB=15\left(cm\right)\)

6 tháng 4 2017

hôm nào tớ thấy bn cũng có bài tập toàn bài tập dễ mà ko chịu làm gianroi

24 tháng 5 2018

â ) Ta có : AC \(\perp\) AB ( tam giác ABC vuông tại A ) 

              : BK  \(\perp\)AB ( gt ) 

Do đo : AC // BK ( vì cùng vuông góc với AB ) 

Xét tứ giác ABKC , ta có :

\(\widehat{A}=90^O\) ( tam giác ABC vuông tại A ) 

\(\widehat{B}=90^O\left(gt\right)\)

AC // BK ( cmt )

Do đo : tứ giác ABKC là hình thang vuông 

b ) Ta co : AC // BK  ( cmt ) 

=> \(\widehat{K_1}=\widehat{A_2}\) ( hai góc so le trong của hai đường thẳng song song ) 

Xét :\(\Delta BAKva\Delta HCA,taco:\)

\(\widehat{B}=\widehat{H}=90^o\)

\(\widehat{K_1}=\widehat{A_2}\left(cmt\right)\)

Do do : \(\Delta BAK\) đồng dạng  \(\Delta HCA\)( g - g ) 

= > \(\frac{AB}{AK}=\frac{CH}{AC}\)

=> AC . AC = AK . CH 

c) CÂU NÀY CÓ 2 CÁCH NHA 

Cach 1 ) 

Ta có : \(\widehat{A_1}+\widehat{B_1}=90^o\) ( tổng số đo hai góc nhọn trong tam giác vuông ) 

mà   :  \(\widehat{A_1}+\widehat{A_2}=90^o\) ( tia AK nằm giữa hai tia AB và AC ) 

nên \(\widehat{B_1}=\widehat{A_2}\) ( cung phụ vào góc  \(\widehat{A_1}\)  ) 

Xét : \(\Delta ABHva\Delta CAH,taco:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\)

 \(\widehat{B_1}=\widehat{A_2}=\left(cmt\right)\)

Do do : \(\Delta ABH\) đồng dạng  \(\Delta CAH\left(g-g\right)\)  

\(=>\frac{HC}{AH}=\frac{AH}{HB}\)

\(=>AH.AH=HB.HC\)

              \(AH^2=9.16\)

              \(AH^2=144\)

                \(AH=\sqrt{144}=12cm\)

Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H 

         \(AB^2=AH^2+BH^2\)

          \(AB=\sqrt{12^2+9^2}\)

            \(AB=\sqrt{144+81}\)

            \(AB=\sqrt{225}\)

            \(AB=15cm\)

Cách 2 : ( của lớp 9 nha ) 

Ta có : BC = BH + HC = 9 + 16 = 25cm ( vì H nằm giữa B và C ) 

Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại A        ( \(\widehat{A}=90^o;AH\perp BC\) ) 

\(AB^2=BH.BC\)

\(AB^2=9.25\)

\(AB^2=225\)

\(AB=\sqrt{225}=15cm\)

Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H 

\(AH^2=AB^2-BH^2\)

\(AH^2=15^2-9^2\)

\(AH^2=225-81\)

\(AH^2=144\)

\(AH=\sqrt{144}=12cm\)

CÒN NHIỀU CÁCH NỮA NHA 

OK CHÚC BẠN HỌC TỐT !!!!! 

    

24 tháng 5 2018

A B C K H

a) Ta có :  \(KB\perp AB\)

                 \(AC\perp AB\)

\(\Rightarrow BK//AC\)

\(\Rightarrow\) tứ giác ABKC là hình thang

b) Ta có BK // AC

\(\Rightarrow\widehat{AKB}=\widehat{KAC}\)( so le trong )

Xét tam giác BAK và tam giác HCA có :

\(\widehat{AKB}=\widehat{KAC}\)

\(\widehat{ABK}=\widehat{AHC}\left(=90^o\right)\)

\(\Rightarrow\)tam giác BAK đồng dạng với tam giác HCA ( g-g ) (đpcm)

\(\Rightarrow\frac{BA}{HC}=\frac{AK}{CA}\)

\(\Leftrightarrow AB\times AC=AK\times CH\left(đpcm\right)\)

c) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung  \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA ( g-g )

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC\times HB\)

\(\Leftrightarrow AB^2=\left(9+16\right)\times9\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=15\left(cm\right)\)

Áp dụng định lý Pi-ta-go cho tam giác ABH vuông tại H ta có :

\(BH^2+AH^2=AB^2\)

\(\Leftrightarrow9^2+AH^2=15^2\)

\(\Leftrightarrow81+AH^2=225\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Vậy AB = 15 cm ; AH = 12 cm

a: Xét tứ giác ABKC có BK//AC

nên ABKC là hình thang

mà góc CAB=90 độ

nên ABKC là hình thang vuông

b: Xét ΔaBK vuông tại B và ΔCHA vuông tại H có

góc BAK=góc HCA

Do đó ΔABK\(\sim\)ΔCHA

Suy ra: AB/CH=AK/AC

hay \(AB\cdot AC=AK\cdot CH\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

d: \(BC=BH+CH=25\left(cm\right)\)

\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

9 tháng 8 2020

2b,

Gọi E là giao MN va BC

Ta có NC//MK (1)

MN//AB mà \(AB\perp BC\) => \(MN\perp BC=E\)

Tam giacs BCM có BH và ME là đg cao cắt nhau tại N \(\Rightarrow CN\perp BM\) (2)

Từ 1 2 suy ra \(BM\perp MK\)

\(\Rightarrow BMK=90\) độ

9 tháng 8 2020

2, MH=MA; NH=NB => MN là đường trung bình của tam giác AHB

\(MN=\frac{1}{2}AB\) và MN//AB

=> MN//CK và MN=CK

=> MNCK là hbh

25 tháng 12 2020

(tự vẽ hình nha)

a,Ta có AM+MB=AB

NC+CD=DC

mà AB=CD(ABCD là HCN)

AM = NC (gt)

=> MB=DN (1)

Ta lại có AB//DC nên MB//DN (2)

Từ (1) và (2) => MBND là HBH

b,ta có : P là trung điểm AB

K là trung điểm AH 

=>PK là đường trung bình tam giác AHB

=PK//BH (*)

mà BH//DM (MBND là HBH) (**)

từ (*) và (**) => PK//DM (ĐPCM)

c,do PK là đường trung bình 

=>PK=1/2BH 

=>PK = BH/2 = 6/2 =3cm

P là trung điểm AB 

=> AP = 1/2AB = AB/2 = 10/2 = 5cm

ta có BH⊥AC mà BH//PK => AC⊥PK

=>△APK vuông tại K

SAPK  là = 1/2AK.KP = 1/2.5.3 = 7,5

phần d mình chưa nghĩ ra