Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) tứ giác ABKC là hình thang vuông.
có AC vuông góc với AB, BK vuông góc góc AB
=> AC song song với BK (từ vuông góc đến song song)
=> tứ giác ACKB là hình thang và có góc CAB =900 (gt)
=> tứ giác ACKB là hình thang vuông
b) Theo câu a) ACKB là hình thang => AC song song với KB
=> góc CAK = góc AKB (so le trong)
Xét tam giác ABK và tam giác CHA có:
góc CAK = góc AKB (CM/trên)
và góc ABK = góc CHA (=900)
=> tam giác ABK đồng dạng với tam giác CHA (g-g)
\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{AC}\Rightarrow AB.AC=AK.CH\)
c) Xét tam giác CAH thì có góc CAH = 900 - góc ACH (1)
Xét tam giác ABC thì góc ABC = 900 - góc ACH (2)
Từ (1)(2)=. góc CAH = góc ABC
Xét tam giác CAH và tam giác ABH có:
góc CAH = góc HBA (CM/trên)
và góc CHA = góc AHB (=900)
=> tam giác CAH đồng dạng với tam giác ABH (g-g)
=> \(\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=CH.BH\)
d) Theo câu c) ta có \(AH^2=BH.CH\) thay số vào ta được:
\(AH^2=9.16=144\Rightarrow AH=12\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác AHB ta có:
\(AB^2=AH^2+HB^2=12^2+9^2=225\Rightarrow AB=15\left(cm\right)\)
hôm nào tớ thấy bn cũng có bài tập toàn bài tập dễ mà ko chịu làm
![](https://rs.olm.vn/images/avt/0.png?1311)
â ) Ta có : AC \(\perp\) AB ( tam giác ABC vuông tại A )
: BK \(\perp\)AB ( gt )
Do đo : AC // BK ( vì cùng vuông góc với AB )
Xét tứ giác ABKC , ta có :
\(\widehat{A}=90^O\) ( tam giác ABC vuông tại A )
\(\widehat{B}=90^O\left(gt\right)\)
AC // BK ( cmt )
Do đo : tứ giác ABKC là hình thang vuông
b ) Ta co : AC // BK ( cmt )
=> \(\widehat{K_1}=\widehat{A_2}\) ( hai góc so le trong của hai đường thẳng song song )
Xét :\(\Delta BAKva\Delta HCA,taco:\)
\(\widehat{B}=\widehat{H}=90^o\)
\(\widehat{K_1}=\widehat{A_2}\left(cmt\right)\)
Do do : \(\Delta BAK\) đồng dạng \(\Delta HCA\)( g - g )
= > \(\frac{AB}{AK}=\frac{CH}{AC}\)
=> AC . AC = AK . CH
c) CÂU NÀY CÓ 2 CÁCH NHA
Cach 1 )
Ta có : \(\widehat{A_1}+\widehat{B_1}=90^o\) ( tổng số đo hai góc nhọn trong tam giác vuông )
mà : \(\widehat{A_1}+\widehat{A_2}=90^o\) ( tia AK nằm giữa hai tia AB và AC )
nên \(\widehat{B_1}=\widehat{A_2}\) ( cung phụ vào góc \(\widehat{A_1}\) )
Xét : \(\Delta ABHva\Delta CAH,taco:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\)
\(\widehat{B_1}=\widehat{A_2}=\left(cmt\right)\)
Do do : \(\Delta ABH\) đồng dạng \(\Delta CAH\left(g-g\right)\)
\(=>\frac{HC}{AH}=\frac{AH}{HB}\)
\(=>AH.AH=HB.HC\)
\(AH^2=9.16\)
\(AH^2=144\)
\(AH=\sqrt{144}=12cm\)
Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H
\(AB^2=AH^2+BH^2\)
\(AB=\sqrt{12^2+9^2}\)
\(AB=\sqrt{144+81}\)
\(AB=\sqrt{225}\)
\(AB=15cm\)
Cách 2 : ( của lớp 9 nha )
Ta có : BC = BH + HC = 9 + 16 = 25cm ( vì H nằm giữa B và C )
Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại A ( \(\widehat{A}=90^o;AH\perp BC\) )
\(AB^2=BH.BC\)
\(AB^2=9.25\)
\(AB^2=225\)
\(AB=\sqrt{225}=15cm\)
Áp dụng định lý pytago vào \(\Delta ABH\) vuông tại H
\(AH^2=AB^2-BH^2\)
\(AH^2=15^2-9^2\)
\(AH^2=225-81\)
\(AH^2=144\)
\(AH=\sqrt{144}=12cm\)
CÒN NHIỀU CÁCH NỮA NHA
OK CHÚC BẠN HỌC TỐT !!!!!
A B C K H
a) Ta có : \(KB\perp AB\)
\(AC\perp AB\)
\(\Rightarrow BK//AC\)
\(\Rightarrow\) tứ giác ABKC là hình thang
b) Ta có BK // AC
\(\Rightarrow\widehat{AKB}=\widehat{KAC}\)( so le trong )
Xét tam giác BAK và tam giác HCA có :
\(\widehat{AKB}=\widehat{KAC}\)
\(\widehat{ABK}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\)tam giác BAK đồng dạng với tam giác HCA ( g-g ) (đpcm)
\(\Rightarrow\frac{BA}{HC}=\frac{AK}{CA}\)
\(\Leftrightarrow AB\times AC=AK\times CH\left(đpcm\right)\)
c) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA ( g-g )
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{AB}\)
\(\Leftrightarrow AB^2=BC\times HB\)
\(\Leftrightarrow AB^2=\left(9+16\right)\times9\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15\left(cm\right)\)
Áp dụng định lý Pi-ta-go cho tam giác ABH vuông tại H ta có :
\(BH^2+AH^2=AB^2\)
\(\Leftrightarrow9^2+AH^2=15^2\)
\(\Leftrightarrow81+AH^2=225\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Vậy AB = 15 cm ; AH = 12 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác ABKC có BK//AC
nên ABKC là hình thang
mà góc CAB=90 độ
nên ABKC là hình thang vuông
b: Xét ΔaBK vuông tại B và ΔCHA vuông tại H có
góc BAK=góc HCA
Do đó ΔABK\(\sim\)ΔCHA
Suy ra: AB/CH=AK/AC
hay \(AB\cdot AC=AK\cdot CH\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
d: \(BC=BH+CH=25\left(cm\right)\)
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2b,
Gọi E là giao MN va BC
Ta có NC//MK (1)
MN//AB mà \(AB\perp BC\) => \(MN\perp BC=E\)
Tam giacs BCM có BH và ME là đg cao cắt nhau tại N \(\Rightarrow CN\perp BM\) (2)
Từ 1 2 suy ra \(BM\perp MK\)
\(\Rightarrow BMK=90\) độ
2, MH=MA; NH=NB => MN là đường trung bình của tam giác AHB
\(MN=\frac{1}{2}AB\) và MN//AB
=> MN//CK và MN=CK
=> MNCK là hbh
![](https://rs.olm.vn/images/avt/0.png?1311)
(tự vẽ hình nha)
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
phần d mình chưa nghĩ ra