Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(S=2^{2018}-1\)
\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)
\(3S=3^2+3^3+3^4+...+3^{2018}\)
\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)
\(2S=3^{2018}-3\)
\(S=\frac{3^{2018}-3}{2}\)
\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)
\(4S=4^2+4^3+4^4+...+4^{2018}\)
\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)
\(3S=4^{2018}-4\)
\(S=\frac{4^{2018}-4}{3}\)
\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)
\(5S=5^2+5^3+5^4+...+5^{2018}\)
\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)
\(4S=5^{2018}-5\)
\(S=\frac{5^{2018}-5}{2}\)
Chúc em học tốt ~
T=\(5^1+5^2+...+5^{2017}\)
=> 5T=\(5^2+5^3+...+5^{2018}\)
=> 5T- T=\(5^{2018}-5\)
=>4T=\(\overline{...5}-5=\overline{...0}\)(Vì 5 lũy thừa bao nhiu cũng có tận cùng là chinh nó)
=> T=\(\overline{...0}\)
Vậy cstc của T là 0
Các bn giải dùm mk nha !!!
Thanks everyone
Ai giải đc thì kb nha
a) Đặt \(C=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{100}}\)
\(\Rightarrow5C=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{99}}\)
\(\Rightarrow5C-C=1-\dfrac{1}{5^{100}}\Rightarrow4C=1-\dfrac{1}{5^{100}}\Rightarrow C=\dfrac{1-\dfrac{1}{5^{100}}}{4}\)
\(\Rightarrow A=8.5^{100}.\dfrac{1-\dfrac{1}{5^{100}}}{4}+1=2.\left(5^{100}-1\right)+1=2.5^{100}-2+1=2.5^{100}-1\)
b)\(B=\dfrac{4}{3}-\dfrac{4}{3^2}+...-\dfrac{4}{3^{100}}\)
\(B=4.\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)\)
Đặt \(\left(\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\right)=D\)
\(\Rightarrow3D=1-\dfrac{1}{3}+...-\dfrac{1}{3^{99}}\)
\(\Rightarrow3D+D=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow D=\dfrac{1-\dfrac{1}{3^{100}}}{4}\)
\(D=\frac{1}{5}+\frac{1}{5^3}+....+\frac{1}{5^{101}}-\frac{1}{5^2}-\frac{1}{5^4}-....-\frac{1}{5^{100}}\)
\(5D=5+\frac{1}{5^2}+...+\frac{1}{5^{100}}-\frac{1}{5}-....-\frac{1}{5^{99}}\)
\(5D+D=5+\frac{1}{5^2}+...+\frac{1}{5^{100}}-\frac{1}{5}-....-\frac{1}{5^{99}}+\frac{1}{5}+...+\frac{1}{5^{101}}-\frac{1}{5^2}-....-\frac{1}{5^{100}}=5+\frac{1}{5^{101}}\)
\(D=\frac{5^{102}+1}{5^{101}}\div6\)
ok men
Ta có : D = 1 + 5 + 52 + ...... + 52017
=> 5D = 5 + 52 + 53 + ...... + 52018
=> 5D - D = 52018 - 1
=> 4D = 52018 - 1
=> D = \(\frac{5^{2018}-1}{4}\)
5D=5+.....+52018
5D-D=5+......52018-1-52-......-52017
4D=52018-1
D=52018-1/4