Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)
\(a,\left(x+3\right)^2\)
\(b,\left(x+\frac{1}{2}\right)^2\)
\(c,\left(xy^2+1\right)^2\)
Ta có: (a+b+c)^2 + a^2 + b^2 + c^2
= a^2 +b^2 +c^2 + 2ab + 2ac + 2bc + a^2 + b^2 + c^2
= (a^2 +2ab+ b^2) + (b^2 +2bc+ c^2) +(c^2 +2ac+ a^2 )
= (a+b)^2 +(b+c)^2 +(c+a)^2
\(\left(a^2+b^2+c^2\right)+a^2+b^2+c^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
a) \(x^2+6x+9=x^2+2.3x+3^2=\left(x+3\right)^2\)
b) \(x^2+x=\text{ }\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
c) \(2xy^2+x^2y^4=\left[\left(xy^2\right)^2+2.xy^2+1^2\right]-1^2=\left(xy^2+1\right)^2-1^2\)
a)\(x^2+2x+1=x^2+2x1+1^2=\left(x+1\right)^2\)
b)\(9x^2+y^2+6xy=3^2x^2+y^2+2.3x.y=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
c)\(25a^2+4b^2-20ab=5^2a^2+2^2b^2-2.5a.2b=\left(5a\right)^2-2.5a.2b+\left(2b\right)^2=\left(5a-2b\right)^2\)
d)\(x^2-x+\frac{1}{4}=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=\left(x-\frac{1}{2}\right)^2\)
a) 6xy^3+x^2y^6+9
= (xy^3 + 3)^2
b) x^4-2x^2y+y^2
= (x^2 - y)^2
c) x^6+25-10x^3
= (x^3 - 5)^2
a/ 6xy3+x2y6+9
= (xy3+3)2 bình phương của 1 tổng;cttq: (A+B)2
b/ x4-2x2y+y2
= (x2-y)2 bình phương của 1 hiệu; cttq (A-B)2
c/ x6+25-10x3
=(x3-5)2