Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-10\cdot2\cdot x+10^2=\left(x-10\right)^2\)
b) \(x^2+2\cdot5\cdot x+5^2=\left(x+5\right)^2\)
c) \(x^2-2\cdot6\cdot xy+\left(6y\right)^2=\left(x-6y\right)^2\)
2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) \(25x^2+\cdot\cdot\cdot+81\)
\(=\left(5x\right)^2+...+9^2\)
\(=\left(5x\right)^2+2.5x.9+9^2\)
\(=25x^2+90x+81\)
b) \(64x^2-\cdot\cdot\cdot+9\)
\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)
\(=\left(8x\right)^2-2.8x.3+3^2\)
\(=64x^2-48x+9\)
\(2xy^2+x^2y^4+1\\ =\left(xy^2\right)^2+2xy^2.1+1^2\\ =\left(xy^2+1\right)^2\)
Ta có :
\(2xy^2+x^2y^4+1=\left(xy^2\right)^2+2.xy^2.1+1^2\)
\(=\left(xy^2+1\right)^2\)
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b)\(\left(x-y+6\right)\left(x+y-6\right)=\left[x-\left(y-6\right)\right]\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
\(a,\left(x+y+4\right)\left(x+y-4\right)\)
\(=\left(x+y\right)^2-4^2\)
\(b,\left(x-y+6\right)\left(x+y-6\right)\)
\(=x^2-\left(y-6\right)^2\)
\(\frac{2a+1}{a^2\left(a+1\right)^2}=\frac{1}{a^2}-\frac{1}{\left(a+1\right)^2}\)