K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Hai số lẻ liên tiếp đó là:

 49+51=100

Vì đó là 2 số lẻ liên tiếp

26 tháng 10 2016

Giả sử số 100 được viết thành  \(k\) số lẻ liên tiếp, vì tổng của \(k\) số lẻ là 100 (số chẵn) nên k phải là số chẵn và \(k\)≥2.

Gọi số hạng đầu tiên của dãy là n (n là số tự nhiên lẻ). Khi đó:

100=n+(n+2)+…+(n+2(k−1))

100=nk+(2+4+…+2(k−1))

100=nk+2(1+2+…+(k−1))

100=nk+2(k−1+12(k−1))

100=nk+k(k−1)

100=k(n+k−1)

Từ đây suy ra k là ước của 100.

Vì k là số chẵn nên k có thể nhận các giá trị: 2;4;10;20;50

∙ k=2. Ta có: 100=2(n+2−1). Do đó n=49, thỏa mãn.

Vậy 100=49+51.

∙ k=4. Ta có: 100=4(n+4−1). Do đó n=22, loại vì n là số lẻ.

∙ k=10. Ta có: 100=10(n+10−1). Do đó n=1, thỏa mãn.

Vậy 100=1+3+5+7+9+11+13+15+17+19.

∙ k=20. Ta có: 100=20(n+20−1). Do đó n=−14, loại.

∙ k=50. Ta có: 100=50(n+50−1). Do đó n=−47, loại.

Kết luận: Có hai cách viết thỏa mãn đó là:

100=49+51=1+3+5+7+9+11+13+15+17+19.