K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(\bar x = \frac{{{n_1}{c_1} + {n_2}{c_2} + {n_3}{c_3} + {n_4}{c_4} + {n_5}{c_5}}}{{40}} = \frac{{1200}}{{40}} = 30\)

Vậy số câu trả lời đúng của các học sinh lớp 11A1 là 30 câu.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)

\(\begin{array}{l}{c_1} = \frac{{16 + 21}}{2} = 18,5;{c_2} = \frac{{21 + 26}}{2} = 23,5;{c_3} = \frac{{26 + 31}}{2} = 28,5;\\{c_4} = \frac{{31 + 36}}{2} = 33,5;{c_3} = \frac{{36 + 41}}{2} = 38,5\end{array}\)

b) \({n_1}{c_1} + {n_2}{c_2} + {n_3}{c_3} + {n_4}{c_4} + {n_5}{c_5} = 4.18,5 + 6.23,5 + 8.28,5 + 18.33,5 + 4.38,5 = 1200\).

c) \(\bar x = \frac{{{n_1}{c_1} + {n_2}{c_2} + {n_3}{c_3} + {n_4}{c_4} + {n_5}{c_5}}}{{40}} = \frac{{1200}}{{40}} = 30\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Cân nặng trung bình của học sinh sau khi ghép nhóm là:

\(\bar x = \frac{{4.47 + 5.51 + 7.55 + 7.59 + 5.63}}{{28}} = 55,6\left( {kg} \right)\)

Cân nặng trung bình của học sinh của mẫu số liệu gốc là:

\(\bar x = 56\left( {kg} \right)\)

Vậy giá trị ước lượng cân nặng trung bình của học sinh sau khi ghép nhóm xấp xỉ bằng cân nặng trung bình của học sinh của mẫu số liệu gốc.

22 tháng 9 2023

Tham khảo:

a)

b) Không thể tính chính xác, chúng ta chỉ có thể tinh số gần đúng thời gian tự học trung bình của các học sinh trong lớp

c) Giá trị đại diện của nhóm bằng trung bình giá trị đầu mút phải và trái của nhóm đó

Nhóm \( \ge 4.5\) là nhóm mở nên ta dựa theo nhóm gần đó nhất là nhóm [3;4.5) để lấy giá trị đại diện

Số trung binh của mẫu số liệu: : \(\bar x = \frac{{0.75 \times 8 + 2.25 \times 23 + 2.75 \times 6 + 5.25 \times 3}}{{40}} = 2.25\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tổng số học sinh: \(n = 8 + 10 + 16 + 24 + 13 + 7 + 4 = 82\)

• Điểm trung bình môn Toán của các học sinh lớp 11 trên là:

\(\bar x = \frac{{8.6,75 + 10.7,25 + 16.7,75 + 24.8,25 + 13.8,75 + 7.9,25 + 4.9,75}}{{82}} = 8,12\)

• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {8;8,5} \right)\).

Do đó: \({u_m} = 8;{n_{m - 1}} = 16;{n_m} = 24;{n_{m + 1}} = 13;{u_{m + 1}} - {u_m} = 8,5 - 8 = 0,5\)

Mốt của mẫu số liệu ghép nhóm là:

\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{24 - 16}}{{\left( {24 - 16} \right) + \left( {24 - 13} \right)}}.0,5 \approx 8,21\)

• Gọi \({x_1};{x_2};...;{x_{82}}\) là điểm của các học sinh lớp 11 được xếp theo thứ tự không giảm.

Ta có:

\(\begin{array}{l}{x_1},...,{x_8} \in \begin{array}{*{20}{c}}{\left[ {6,5;7} \right)}\end{array};{x_9},...,{x_{18}} \in \begin{array}{*{20}{c}}{\left[ {7;7,5} \right)}\end{array};{x_{19}},...,{x_{34}} \in \begin{array}{*{20}{c}}{\left[ {7,5;8} \right)}\end{array};{x_{35}},...,{x_{58}} \in \begin{array}{*{20}{c}}{\left[ {8;8,5} \right)}\end{array};\\{x_{59}},...,{x_{71}} \in \begin{array}{*{20}{c}}{\left[ {8,5;9} \right)}\end{array};{x_{72}},...,{x_{78}} \in \begin{array}{*{20}{c}}{\left[ {9;9,5} \right)}\end{array};{x_{79}},...,{x_{82}} \in \begin{array}{*{20}{c}}{\left[ {9,5;10} \right)}\end{array}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{41}} + {x_{42}}} \right)\)

Ta có: \(n = 82;{n_m} = 24;C = 8 + 10 + 16 = 34;{u_m} = 8;{u_{m + 1}} = 8,5\)

Do \({x_{41}},{x_{42}} \in \begin{array}{*{20}{l}}{\left[ {8;8,5} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{\frac{{82}}{2} - 34}}{{24}}.\left( {8,5 - 8} \right) \approx 8,15\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_{21}}\).

Ta có: \(n = 82;{n_m} = 16;C = 8 + 10 = 18;{u_m} = 7,5;{u_{m + 1}} = 8\)

Do \({x_{21}} \in \begin{array}{*{20}{l}}{\left[ {7,5;8} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 7,5 + \frac{{\frac{{82}}{4} - 18}}{{16}}.\left( {8 - 7,5} \right) \approx 7,58\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{62}}\).

Ta có: \(n = 82;{n_j} = 13;C = 8 + 10 + 16 + 24 = 58;{u_j} = 8,5;{u_{j + 1}} = 9\)

Do \({x_{62}} \in \begin{array}{*{20}{l}}{\left[ {8,5;9} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 8,5 + \frac{{\frac{{3.82}}{4} - 58}}{{13}}.\left( {9 - 8,5} \right) \approx 8,63\)

16 tháng 1 2019

Đáp án D

Phương pháp:

TH1: An và Cường trả lời đúng, Bình trả lời sai.

TH2: Bình và Cường trả lời đúng, An trả lời sai.

Áp dụng quy tắc cộng.

Cách giải:

TH1: An và Cường trả lời đúng, Bình trả lời sai => P1 = 0,9.(1 - 0,7).0,8 = 0,216

TH2: Bình và Cường trả lời đúng, An trả lời sai => P2 = (1 - 0,9).0,7.0,8 = 0,056

Vậy xác suất cô giáo chỉ kiểm tra bài cũ đúng 3 bạn trên là P = P1 + P2 = 0,272

11 tháng 7 2017

Chọn D

Gọi A là biến cố “Học sinh nhận được 6 điểm”.

Xác suất đánh đúng 1 câu là 1 4 và đánh sai 1 câu là 3 4 .

Để nhận được 6 điểm học sinh đó cần đánh đúng 12 câu và sai 8 câu.

3 tháng 12 2021

Có 2 bạn giỏi văn , 7 bạn giỏi toán, 3 bạn giỏi cả 2 môn

Có 2C1.7C1 =14 ( cách )

23 tháng 10 2018

Đáp án B

Học sinh đó làm đúng được 5 điểm khi làm được đúng 25 câu bất kỳ trong số 50 câu, 25 câu còn lại làm sai.

Xác suất để học sinh là đúng một câu bất kỳ là  1 4 , làm sai một câu là . Do đó xác suất để học sinh đó làm đúng 25 câu bất kỳ trong số 50 câu là  C 50 25 . 1 4 25 .

Xác suất để hoạc sinh đó làm sai 25 câu còn lại là  3 4 25 .

Vậy xác suất để học sinh đó làm được đúng 5 điểm là:  C 50 25 . 1 4 25 . 3 4 25