\(3,4\times10^{-8}\)                  B=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

a) A = 3,4 . 10-8 = \(\frac{3,4}{10^{-8}}=\frac{34}{10^{-9}}\)

B = 34 . 10-9 = \(\frac{34}{10^{-9}}\)

A = B

b) \(\frac{A}{B}=\frac{\frac{1}{10^4}+\frac{1}{10^3}+\frac{1}{10^2}}{\frac{1}{10^9}}\)

\(=\left(\frac{1}{10^4}+\frac{1}{10^3}+\frac{1}{10^2}\right).10^9\)

\(=\frac{1+10+10^2}{10^4}.10^9\)

\(=111.10^5\)

=> A = 11100000B

23 tháng 7 2019
https://i.imgur.com/DYPoltw.jpg
2 tháng 2 2019

làm ơn các bạn hãy giúp mình mình cần ngay:x

3 tháng 2 2019

mk lm rùi nên k cần giúp nx đâu

22 tháng 5 2017

nhờ 2 câu nha

tim x 

(x2+1)2+3x (x2+1)2+2x2=0

 x3+6x+12x +8x3 -21=0

22 tháng 5 2017

\(1.\) sai đề rồi nha. dề đúng phải là  \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
  đặt \(\left(x^2+1\right)=k\)   \(\Rightarrow\)biểu thức trên có dạng là  \(k^2+3xk+2x^2=0\)
                                       \(\Leftrightarrow\)                                 \(\left(k+x\right)\left(k+2x\right)=0\)     
suy ra             \(k+x=0\)              hoặc                      \(k+2x=0\)
            \(x^2+1+x=0\)                                \(x^2+1+2x=0\)
           bấm máy tình không ra                                     \(\left(x+1\right)^2=0\)     
           nên ko có giá trị của x                                              \(x+1=0\)
                                                                                                  \(x=-1\)
             Vậy \(x=-1\)

4 tháng 10 2017

Theo bài ra ta có:

\(\dfrac{2}{7}A=\dfrac{9}{4}.\dfrac{3}{10}B\\ \Rightarrow\dfrac{2}{7}A=\dfrac{27}{40}B\\ \Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{27}{40}}{\dfrac{2}{7}}=\dfrac{189}{80}\)

29 tháng 11 2018

\(\dfrac{2}{7}\)A=\(\dfrac{3}{10}\).\(\dfrac{4}{9}\)

\(\dfrac{2}{7}\)A=\(\dfrac{2}{15}\)B

\(\dfrac{A}{\dfrac{2}{15}}=\dfrac{B}{\dfrac{2}{7}}\)

\(\dfrac{A}{B}=\dfrac{2}{\dfrac{15}{\dfrac{2}{7}}}\)

\(\dfrac{A}{B}=\dfrac{7}{15}\)

2 tháng 2 2019

iúp mình vs help me >3

3 tháng 2 2019

mk làm rùi nên mn k cần giúp nx đâu.Hihi

4 tháng 10 2016

\(\frac{2}{7}\)A = \(\frac{3}{10}\)B x \(\frac{4}{9}\)\(\frac{2}{15}\)B => \(\frac{A}{B}\)\(\frac{2}{15}\)\(=\frac{7}{15}\)

                                                                         \(\frac{2}{7}\)

9 tháng 10 2016

oh ! naruto hàng nhái . tính nhái anh à ?

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)