Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ví dụ
a là 1
b là 2
ta có
1/1 - 1/2 và 1/1x2
= 1/2 và 1/2
khi đó ta thấy 1/2 = 1/2
và 1/1 - 1/2 = 1/1x2
\(Giải\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)\(+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2014}\)
\(A=0+0+0+...+0+0\)
\(\Rightarrow A=0\)
\(a.\)\(A< 1\)
b. \(A< \frac{3}{4}\)
a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
=> A < B
a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018
B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019
vì 1/2017*2018>1/2018*2019=> A<B
b)
\(A=\frac{1}{2\times4}+\frac{1}{4\times6}+\frac{1}{6\times8}+...+\frac{1}{2012\times2014}\)
\(=\frac{1}{2}\times(\frac{2}{2\times4}+\frac{2}{4\times6}+\frac{2}{6\times8}+...+\frac{2}{2012\times2014})\)
\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2012}-\frac{1}{2014})\)
\(=\frac{1}{2}\times(\frac{1}{2}-\frac{1}{2014})\)
\(=\frac{1}{2}\times(\frac{1007}{2014}-\frac{1}{2014})\)
\(=\frac{1}{2}\times\frac{503}{1007}\)
\(=\frac{503}{2014}\)
Ta có ; \(\frac{1}{2}=\frac{1007}{2014}\)
Vậy A bé hơn B
Chúc bạn học tốt