K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

\(P=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-3

16 tháng 10 2016

P = x2 + y2 - 2x + 6y + 12 = x2 + y2 - 2x + 6x + 1 + 9 + 2

=> P = (x2 - 2x + 1) + (y2 + 6y + 9) + 2

=> P = (x - 1)2 + (y + 3)2 + 2 \(\ge\)2

Đẳng thức xảy ra khi: (x - 1)2 = 0 và (y + 3)2 = 0  <=> x = 1 và y = -3

Vậy GTNN của P là 2 khi x = 1 và y = -3.

10 tháng 11 2015

\(P=x^2+y^2-2x+6y+19=x^2-2x+1+y^2+6y+9+9=\left(x-1\right)^2+\left(y+3\right)^2+9\)

Vì \(\left(x-1\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\)

Nên  \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)

Vậy  giá trị nhỏ nhất của P là 9 tại

\(x-1=0\Rightarrow x=1\)

và \(y+3=0\Rightarrow y=-3\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

9 tháng 10 2018

ta có: M = x2 + y2 - 2x + 6y + 11

M = (x2 - 2x + 1) + (y2 + 6y + 9) + 1

M = (x2 - 2.1.x + 12) + (y2 + 2.3.y + 32) + 1

M = (x-1)2 + (y+3)2 + 1

Để M nhỏ nhất

=> (x-1)2 và (y+3)2 nhỏ nhất

mà \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0.\)

Dấu "=" xảy ra khi:

x-1 = 0 => x = 1

y+3 = 0 => y = -3

=> giá trị nhỏ nhất của M = 1 tại x = 1 ; y = -3

9 tháng 10 2018

Ta có : \(x^2;y^2\ge0\forall x;y\)

     \(2x;6y\ge0\forall x;y\)

\(=>x^2+y^2-2x+6y+11\ge0\)

\(=>x^2+y^2-2x+6y+11\ge11\)

=> \(M\ge11\)

Dấu "=" xảy ra \(\Leftrightarrow x;y=0\)

Vậy Mmin=11 <=> x;y=0

Study well

19 tháng 8 2020

Bài làm:

a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)

Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)

19 tháng 8 2020

a) P = x2 - 5x 

         = ( x2 - 5x + 25/4 ) - 25/4

         = ( x - 5/2 )2 - 25/4

( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> MinF = -25/4 <=> x = 5/2

b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015 

         = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010

         = [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010

         = ( x + y - 1 )2 + ( y - 2 )2 + 2010

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

=> MinQ = 2010 <=> x = -1 , y = 2

19 tháng 7 2017

Ta có : M = x2 + y2 - x + 6y + 10

= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)

= (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\)

Mà ; (x -  \(\frac{1}{2}\) )2 và (y + 3)\(\ge0\forall x\)

Nên :  (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3

19 tháng 7 2017

Ta có :  \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\)  và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3

10 tháng 6 2017

mk giải lun nha :

b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)

nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)

\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)

hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3

VẬY B MIN =3/4 <=>X=1/2,Y=3

MK CHỈ LÀM ĐƯỢC CÂU B THUI 

10 tháng 7 2015

a)Đặt  \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì   \(\left(x-\frac{3}{2}\right)^2\ge0\)  với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)

Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)

b) Đặt  \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)

Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.