Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+) Số trung bình \(\overline x = \frac{{ - 2.10 + ( - 1).10 + 0.30 + 1.20 + 2.10}}{{10 + 20 + 30 + 20 + 10}} = 0\)
+) phương sai hoặc \({S^2} = \frac{1}{90}\left( {10.{{( - 2)}^2} + 10.{{( - 1)}^2} + ... + {{10.2}^2}} \right) - {0^2} = 4 \over 3\)
=> Độ lệch chuẩn \(S \approx 1,155\)
+) Khoảng biến thiên: \(R = 2 - ( - 2) = 4\)
Tứ phân vị: \({Q_2} = 0;{Q_1} = - 1;{Q_3} = 1\)
+) Khoảng tứ phân vị: \({\Delta _Q} = 1 - ( - 1) = 2\)
b) Giả sử cỡ mẫu \(n = 10\). Khi đó mẫu số liệu trở thành:
Giá trị | 0 | 1 | 2 | 3 | 4 |
Tần số | 1 | 2 | 4 | 2 | 1 |
+) Số trung bình \(\overline x = \frac{{0.0,1 + 1.0,2 + 2.0,4 + 3.0,2 + 4.0,1}}{{0,1 + 0,2 + 0,4 + 0,2 + 0,1}} = 2\)
+) phương sai hoặc \({S^2} = \frac{1}{1}\left( {0,{{1.0}^2} + 0,{{2.1}^2} + ... + 0,{{1.4}^2}} \right) - {2^2} = 1,2\)
=> Độ lệch chuẩn \(S \approx 1,1\)
+) Khoảng biến thiên: \(R = 4 - 0 = 4\)
Tứ phân vị: \({Q_2} = 2;{Q_1} = 1;{Q_3} = 3\)
+) Khoảng tứ phân vị: \({\Delta _Q} = 3 - 1 = 2\)
Tham khảo:
n=10
Giả sử sau khi sắp xếp 10 số dương theo thứ tự không giảm thì được:
=> Trung vị là giá trị trung bình của số thứ 5 và thứ 6.
=> \({Q_1}\) là số thứ 3 và \({Q_3}\) là số thứ 8.
a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì:
+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần
=> R tăng 2 lần
+ \({Q_1}\) và \({Q_3}\) tăng 2 lần
=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) tăng 2 lần.
+ Giá trị trung bình tăng 2 lần
=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) cũng tăng 2 lần
=> \({\left( {{x_i} - \overline x} \right)^2}\) tăng 4 lần
=> Phương sai tăng 4 lần
=> Độ lệch chuẩn tăng 2 lần.
Vậy R tăng 2 lần, khoảng tứ phân vị tăng 2 lần và độ lệch chuẩn tăng 2 lần.
b) Cộng mỗi giá trị của mẫu số liệu với 2 thì
+ Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị
=> R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ \({Q_1}\) và \({Q_3}\) tăng 2 đơn vị
=> Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
+ Giá trị trung bình tăng 2 đơn vị
=> Độ lệch của mỗi giá trị so với giá trị trung bình \(\left| {{x_i} - \overline x} \right|\) không đổi vì phần tăng thêm bị triệt tiêu cho nhau.
=> \({\left( {{x_i} - \overline x} \right)^2}\) không đổi
=> Phương sai không đổi.
=> Độ lệch chuẩn không đổi.
Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.
Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:
160 | 162 | 164 | 165 | 172 | 174 | 177 | 178 | 180 |
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
160 162 164 165 172 174 177 178 180
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)
Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)
Tứ phân vị của mẫu số liệu trên là:
- Trung vị của dãy 160 162 164 165 là: \({Q_1} = 163\)
- Trung vị của dãy 174 177 178 180 là: \({Q_3} = 177,5\)
- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)
b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)
c) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)
Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx 7,13\)
a) Xét mẫu số liệu đã sắp xếp là: \(2;2;5;7;10;10;13;15;19\)
Khoảng biến thiên của mẫu số liệu là: \(R = 19 - 2 = 17.\)
Cỡ mẫu là \(n = 9\) là số lẻ nên giá trị tứ phân vị thứ hai là: \({Q_2} = 10.\)
Tứ phân vị thứ nhất là trung vị của mẫu: \(2;2;5;7\). Do đó \({Q_1} = 3,5\)
Tứ phân vị thứ ba là trung vị của mẫu: \(10;13;15;19\). Do đó \({Q_3} = 14\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 14 - 3,5 = 10,5\)
b) Xét mẫu số liệu đã sắp xếp là: \(1;2;5;5;9;10;10;15;15;19\)
Khoảng biến thiên của mẫu số liệu là: \(R = 19 - 1 = 18.\)
Cỡ mẫu là \(n = 10\) là số chẵn nên giá trị tứ phân vị thứ hai là: \({Q_2} = 9,5.\)
Tứ phân vị thứ nhất là trung vị của mẫu: \(1;2;5;5;9\). Do đó \({Q_1} = 5.\)
Tứ phân vị thứ ba là trung vị của mẫu: \(10;10;15;15;19\). Do đó \({Q_3} = 15\)
Khoảng tứ phân vị của mẫu là: \({\Delta _Q} = 15 - 5 = 10\)
'''''''''''''F'F'S'JURSMJHYT,JTHDNHTDNMYHJFGJHTMJHTMJYT
Sắp xếp theo thứ tự không giảm.
2,593 2,977 3,155 3,270 3,387 3,412 3,813 3,920 4,042 4,236
Khoảng biến thiên \(R = 4,236 - 2,593 = 1,643\)
Vì n=10 nên ta có:
\({Q_1} = 3,155\); \({Q_3} = 3,920\)
Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1} = 3,920 - 3,155\)\( = 0,765\)
\(\overline x \approx 3,481\)
Ta có:
Độ lệch chuẩn: \(s = \sqrt {0,2396} \approx 0,489\)Phương sai là: \({s_2} = \frac{{2,396}}{{10}} = 0,2396\)
a) Dựa vào biểu đồ, ta có mẫu số liệu là:
5767 5757 5737 5727 5747 5747 5722
b) Khoảng biến thiên của mẫu số liệu đó là: \(R = {x_{\max }} - {x_{\min }} = 5767 - 5722 = 45\)
c) +) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta có:
5722 5727 5737 5747 5747 5757 5767
+) Các tứ phân vị của mẫu số liệu là:
Trung vị của mẫu số liệu: \({Q_2}\) = 5747.
Trung vị của dãy 5722 5727 5737 là: \({Q_1}\) = 5727.
Trung vị của dãy 5747 5757 5767 là: \({Q_3}\) = 5757.
+) Khoảng tứ phân vị của mẫu số liệu là: \({\Delta _Q} ={Q_3} - {Q_1}\) = 5757- 5727= 30.
d) +) Giá vàng trung bình trong 7 ngày đầu tiên của tháng 6 năm 2021 là: \(\overline x = \frac{{5722{\rm{ + }}5727{\rm{ + }}5737{\rm{ + }}5747{\rm{ + }}5747{\rm{ + }}5757{\rm{ + }}5767}}{7} = 5743,43\) ( nghìn đồng/ chỉ)
+) Phương sai của mẫu số liệu là: \({s^2} = \frac{{\left[ {{{\left( {5722 - \overline x } \right)}^2} + {{\left( {5727 - \overline x } \right)}^2} + ... + {{\left( {5767 - \overline x } \right)}^2}} \right]}}{7} \approx 219,39\)
+) Độ lệch chuẩn của của mẫu số liệu là: \(s = \sqrt {{s^2}} = \sqrt {219,39} \approx 14,81\)( nghìn đồng/ chỉ)
Khẳng định (1): Nếu các giá trị của mẫu số liệu càng tập trung quanh giá trị trung bình thì độ lệch của mỗi giá trị so với giá trị trung bình càng nhỏ (tức là \({x_i} - \overline x \) càng nhỏ, với \(i = 1;2;...;n\)), dẫn đến độ lệch chuẩn càng nhỏ.
\(\Rightarrow\)(1) Sai
Khẳng định (2): Khoảng biến thiên R bằng hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất nên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất
\(\Rightarrow\) (2) Đúng.
Khẳng định (3): Khoảng tứ phân vị \({\Delta _Q} = {Q_3} - {Q_1}\), các giá trị \({Q_1},{Q_3}\) không bị ảnh hưởng bởi giá trị của giá trị lớn nhất và giá trị nhỏ nhất (với n>4)
\(\Rightarrow\) Sai
Khẳng định (4): Khoảng tứ phân vị chính là khoảng biến thiên của 50% số liệu chính giữa của mẫu số liệu đã sắp xếp
\(\Rightarrow\) Sai.
Khẳng định (5): Các số đo độ phân tán là
Khoảng biến thiên R=Số lớn nhất – Số nhỏ nhất > 0
Trước khi tính khoảng tứ phân vị thì mẫu số liệu được sắp xếp theo thứ tự không giảm
\(\Rightarrow\) \({Q_3} > {Q_1}\) => \({\Delta _Q} = {Q_3} - {Q_1} > 0\)
Phương sai \({s^2} = \frac{{{{\left( {{x_1} - \overline x} \right)}^2} + {{\left( {{x_2} - \overline x} \right)}^2} + ... + {{\left( {{x_n} - \overline x} \right)}^2}}}{n} > 0\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} > 0\)
\(\Rightarrow\) Các số đo độ phân tán đều không âm
\(\Rightarrow\) (5) Đúng.
a)
+) Số trung bình \(\overline x = \frac{{6 + 8 + 3 + 4 + 5 + 6 + 7 + 2 + 4}}{9} = 5\)
+) phương sai hoặc \({S^2} = \frac{1}{9}\left( {{6^2} + {8^2} + ... + {4^2}} \right) - {5^2} = \frac{{10}}{3}\)
=> Độ lệch chuẩn \(S = \sqrt {\frac{{10}}{3}} \approx 1,8\)
Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 3; 4; 4; 5; 6; 6; 7; 8.
+) Khoảng biến thiên: \(R = 8 - 2 = 6\)
Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
\({Q_2} = {M_e} = 5\)
\({Q_1}\) là trung vị của nửa số liệu 2; 3; 4; 4. Do đó \({Q_1} = 3,5\)
\({Q_3}\) là trung vị của nửa số liệu: 6; 6; 7; 8. Do đó \({Q_3} = 6,5\)
+) Khoảng tứ phân vị: \({\Delta _Q} = 6,5 - 3,5 = 3\)
+) x là giá trị ngoại lệ trong mẫu nếu \(x > 6,5 + 1,5.3 = 11\) hoặc \(x < 3,5 - 1,5.3 = - 1\)
Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.
b)
+) Số trung bình \(\overline x = \frac{{13 + 37 + 64 + 12 + 26 + 43 + 29 + 23}}{8} = 30,875\)
+) phương sai hoặc \({S^2} = \frac{1}{8}\left( {{{13}^2} + {{37}^2} + ... + {{23}^2}} \right) - 30,{875^2} \approx 255,8\)
=> Độ lệch chuẩn \(S \approx 16\)
Sắp xếp mẫu số liệu theo thứ tự không giảm: 12; 13; 23; 26; 29; 37; 43; 64.
+) Khoảng biến thiên: \(R = 64 - 12 = 52\)
Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)
\({Q_2} = {M_e} = 27,5\)
\({Q_1}\) là trung vị của nửa số liệu 12; 13; 23; 26. Do đó \({Q_1} = 18\)
\({Q_3}\) là trung vị của nửa số liệu: 29; 37; 43; 64. Do đó \({Q_3} = 40\)
+) Khoảng tứ phân vị: \({\Delta _Q} = 40 - 18 = 22\)
+) x là giá trị ngoại lệ trong mẫu nếu \(x > 40 + 1,5.22 = 73\) hoặc \(x < 18 - 1,5.22 = - 15\)
Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.