Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi cạnh thứ 1,2,3 lần lượt là a,b,c
Ta có:\(\frac{a}{1}=\frac{b}{2},3b=4c\) và a+b+c=36
\(\Rightarrow\frac{a}{1}=\frac{b}{2},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4},\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{2+4+3}=\frac{36}{9}=4\)(T/C...)
\(\Rightarrow a=4\cdot2=8,b=4\cdot4=16,c=4\cdot3=12\)
Vậy độ dài cạnh thứ 1,2,3 lần lượt là:8m,16m,12m
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi độ dài một cạnh gv là a => Cạnh còn lại là 3a
Theo định lý Pytago:
\(a^2+\left(3a\right)^2=a^2+9a^2=20^2=400\)
\(\Leftrightarrow10a^2=400\)
\(\Leftrightarrow a^2=40\Rightarrow a=\sqrt{40}\)
\(\Rightarrow3a=3\sqrt{40}\)
Vậy độ dài hai cạnh gv là \(\sqrt{40}\)và \(3\sqrt{40}cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b1 :
a. gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+b+c)/(3+5+7) = a/3 = b/5 = c/7 mà a+b+c = 45 (chu vi)
=> 45/15 = a/3 = b/5 = c/7 = 3
=> a = 3.3 = 9; b = 5.3 = 15; c = 7.3 = 21 (tm)
b,
gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+c-b)/(3+7-5) = a/3 = b/5 = c/7 mà a+c-b = 20
=> 20/5 = a/3 = b/5 = c/7 = 4
=> a = 3.4 = 12; b = 4.5 = 20; c = 4.7 = 28 (tm)
![](https://rs.olm.vn/images/avt/0.png?1311)
gọi :ba cạnh của hình tam giác là a ,b,c
ta có :\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)
áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{3}=2,7\Rightarrow a=2,7.3=8,1\)
\(\frac{b}{5}=2,7\Rightarrow b=2,7.5=13,5\)
\(\frac{c}{7}=2,7\Rightarrow c=2,7.7=18,9\)
đáp số : 3 cạnh hình vuông có chiều dài là :18,9;13,5;8,1
Gọi độ dài 3 cạnh của 1 tam giác lần lượt là a, b, c (cm)
Theo đề bài ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)
\(a+b+c=40,5\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)
\(\cdot\frac{a}{3}=2,7\Rightarrow a=2,7.3=8,1\)
\(\cdot\frac{b}{5}=2,7\Rightarrow b=2,7.5=13,5\)
\(\cdot\frac{c}{7}=2,7\Rightarrow c=2,7.7=18,9\)
Vậy độ dài 3 cạnh của 1 tam giác lần lượt là 8,1cm; 13,5cm; 18,9cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi cạnh còn lại có độ dài là \(x\), theo bất đẳng thức tam giác ta có:
\(7-1< x< 7+1\Rightarrow6< x< 8\)
⇒ \(x=7\)
Chọn D
Gọi độ dài cạnh còn lại của tam giác là `x (x \ne 0,`\(\in N\)\(\text{*}\) `)`
Theo bất đẳng thức tam giác ta có:
`1+7 > x > 7-1`
`-> 8> x> 6`
`-> x= {7}`
Xét các đáp án `-> D (tm)`
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi cạnh còn lại có độ dài là x, theo bất đẳng thức tam giác ta có:
10 - 2 < x < 10 + 2 ⇒ 8 < x < 12. Chọn D
Gọi độ dài cạnh thứ ba là \(a\)
Theo đề ra: Độ dài cạnh thứ hai là \(\frac{3a}{2}\)
Độ dài cạnh thứ nhất là \(\frac{3}{2}.\frac{3a}{2}=\frac{9a}{4}\)
Bất đẳng thức tam giác được thỏa mãn: \(a+\frac{3}{2}a=\frac{5a}{2}>\frac{9a}{4}\)
Chu vi của tam giác là:
\(a+\frac{3a}{2}+\frac{9a}{4}=\frac{19a}{4}\left(cm\right)\)
Theo đề ra, ta có: \(\frac{19a}{8}=9.5\Rightarrow a=4\)
Vậy độ dài ba cạnh của tam giác đó là: \(4cm;6cm;9cm\)