Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại của hàm số.
y"(1) = 8 > 0 ⇒ x = 1 là điểm cực tiểu của hàm số.
y"(-1) = 8 > 0 ⇒ x = -1 là điểm cực tiểu của hàm số.
a)Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:
Quy tắc 1:
1. Tìm tập xác định.
2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.
3. Lập bảng biến thiên.
4. Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
1. Tìm tập xác định.
2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.
3. Tính f"(x) và f"(xi)
4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.
Nếu f"(xi) < 0 thì xi là điểm cực đại.
Dựa vào Quy tắc 2, ta có:
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.
y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.
Đáp án A
Phương pháp:
+) Tính y’ và giải phương trình y' = 0
+) Lập bảng xét dấu của y’ và rút ra kết luận.
+) Điểm x = x0 được gọi là điểm cực tiểu của hàm số khi và chỉ khi qua điểm đó y’ đổi dấu từ âm sang dương.
Cách giải:
Bảng xét dấu y’:
Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT = y(0) = 2
Đáp án A.
y = x4 + 4x3 TXĐ: D = R
y’ = 4x3 + 12x2 = 0
Lập bảng xét dấu của y’ và suy ra hàm số có 1 cực trị
Chọn C
[Phương pháp tự luận]
Hàm số có cực đại , cực tiểu khi và chỉ khi m < 1
Tọa độ điểm cực trị A ( 0 ; m + 1 )
Phương trình đường thẳng BC: y + m 4 - 2 m 2 - m = 0
Vậy S đạt giá trị lớn nhất ⇔ m = 0
[Phương pháp trắc nghiệm]
Vậy S đạt giá trị lớn nhất ⇔ m = 0
Đáp án B.
Tập xác định D = R.
y' = 4x3 + 4x
y’ = 0 <=> 4x3 + 4x = 0 <=> x = 0.
Bảng biến thiên