Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Để A là số nguyên thì \(x+1⋮3\)
=>x=3k-1, với k là số nguyên
b; Để B là số nguyên thì \(x-1\in\left\{1;-1;17;-17\right\}\)
hay \(x\in\left\{2;0;18;-16\right\}\)
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
\(a,\frac{x+6}{x+1}\)
\(\left\{\left(x+6\right)-\left(x+1\right)\right\}⋮x+1\)
\(5⋮x+1\)
\(x+1\inƯ_{\left(5\right)}=\left\{-5;5;1;-1\right\}\)
\(=>x\inƯ_{\left(5\right)}=\left\{-6;4;0;-2\right\}\)
\(b,\frac{x-2}{x+3}\)
\(\left\{\left(x+3\right)-\left(x-2\right)\right\}⋮x+3\)
\(5⋮x+3\)\(=>x+3\inƯ_{\left(5\right)}=\left\{-5;5;-1;1\right\}\)
\(=>x\in\left\{-8;2;-4;-2\right\}\)
\(\frac{2n+3}{7}=\frac{2n-4+7}{7}=\frac{2\left(n-2\right)+7}{7}=1+\frac{2\left(n-2\right)}{7}\)
Để \(1+\frac{2\left(n-2\right)}{7}\) là số nguyên <=> \(\frac{2\left(n-2\right)}{7}\) là số nguyên
Mà ( 2;7 ) = 1 => n - 2 chia hết co 7 hay n - 2 = 7k ( k thuộc N* )
=> n = 7k + 2
Vậy với n = 7k + 2 thì \(\frac{2n+3}{7}\) có gt nguyên
A=3n+4/n-1=3n-3+7/n-1=3(n-1)/n-1+7/n-1=3+7/n-1. Vì A nguyên, 3 nguyên nên 7/n-1 nguyên => n-1 E Ư(7)
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
b/6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1-5/3n+1=2-5/3n+1=>3n+1 E Ư(5)
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2/3 | 4/3 | -2 |
Tim gia tri n thuoc N, biet : 2n2 + 1/n2 - 1 de A nhan gia tri nguyen
a) Để \(\frac{7-x}{x-2}\inℤ\) thì \(\left(7-x\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left[-1\left(7-x\right)\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-7\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-2-5\right]⋮\left(x-2\right)\)
Vì \(\Leftrightarrow\left[x-2\right]⋮\left(x-2\right)\) nên \(\Leftrightarrow5⋮\left(x-2\right)\)
hay \(x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng:
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{1;\pm3;7\right\}\)
b) Để \(\frac{x+8}{3-x}\inℤ\) thì \(\left(x+8\right)⋮\left(3-x\right)\)
\(\Leftrightarrow\left[-1\left(x+8\right)\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[8-x\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[5+3-x\right]⋮\left(3-x\right)\)
Vì \(\left[3-x\right]⋮\left(3-x\right)\) nên \(5⋮\left(3-x\right)\)
Lập bảng như câu a)
Ta có : \(\frac{x}{7}\)=\(\frac{x+16}{35}\)<=> 35x=7(x+16)
<=>35x=7x+112
<=>35x-7x=112
<=>28x =112
<=> x = 4