K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

Ta có:

\(AD = 1,5m;AE = 3m;BD = 3m;EC = 6m;\)

\(AB = AD + DB = 1,5 + 3 = 4,5m;AC = AE + EC = 3 + 6 = 9m\)

Ta có:

\(\frac{{AD}}{{BD}} = \frac{{1,5}}{3} = \frac{1}{2};\frac{{AE}}{{EC}} = \frac{3}{6} = \frac{1}{2}\). Do đó, \(AD\) và \(BD\) tỉ lệ với \(AE\) và \(EC\).

\(\frac{{AD}}{{AB}} = \frac{{1,5}}{{4,5}} = \frac{1}{3};\frac{{AE}}{{AC}} = \frac{3}{9} = \frac{1}{3}\). Do đó, \(AD\) và \(AB\) tỉ lệ với \(AE\) và \(AC\).

\(\frac{{AB}}{{BD}} = \frac{{4,5}}{3} = \frac{3}{2};\frac{{AC}}{{EC}} = \frac{9}{6} = \frac{3}{2}\). Do đó, \(AB\) và \(BD\) tỉ lệ với \(AC\) và \(EC\).

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ điểm C sao cho BC = 4 cm.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm B, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối B với C, C với D, D với A.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm A, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8  → Nháy chuột vào điểm B, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm A → Chọn điểm C.

 Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm B → Chọn điểm C.

Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Nháy chuột vào điểm A, nhập bán kính bằng 6.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột lần lượt vào các điểm A, B.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.

Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột vào đường thẳng vừa vẽ.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

- Hình a:

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}x \Leftrightarrow 6 = \frac{1}{2}x \Leftrightarrow x = 6:\frac{1}{2} = 12\)

- Hình b:

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow 7 = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow \left( {x + 3} \right) = 7:\frac{1}{2} = 14\)

\( \Rightarrow x = 14 - 3 \Leftrightarrow x = 11\).

- Hình c

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\[\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}.58 \Leftrightarrow \left( {5x - 1} \right) = \frac{1}{2}.58\]

\[ \Leftrightarrow \left( {5x - 1} \right) = 29 \Leftrightarrow 5x = 30 \Leftrightarrow x = 30:5 \Leftrightarrow x = 6\].

a: MN là đường trung bình

=>MN=BC/2

=>x=6*2=12

b: MN là đường trung bình

=>2x+3=2*7=14

=>2x=11

=>x=11/2

c: MN là đường trung bình

=>5x-1=58/2=29

=>5x=30

=>x=6

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét \(\Delta ABE\) và \(\Delta ACD\) có:

\(\widehat {EBA} = \widehat {ACD}\) (giả thuyết)

\(\widehat {BAE} = \widehat {CAD} = 90^\circ \)

Do đó, \(\Delta ABE\backsim\Delta ACD\) (g.g)

Vì \(\Delta ABE\backsim\Delta ACD\) nên \(\frac{{AB}}{{AC}} = \frac{{EB}}{{CD}}\) (các cặp cạnh tương ứng)

Thay số, \(\frac{{20}}{{AC}} = \frac{{25}}{{15}} \Rightarrow AC = \frac{{20.15}}{{25}} = 12\)cm.

Áp dụng định lí Py – ta – go cho \(\Delta ABE\) vuông tại \(A\) ta có:

\(B{E^2} = A{E^2} + A{B^2} \Leftrightarrow A{E^2} = B{E^2} - A{B^2} = {25^2} - {20^2} = 225 \Rightarrow AE = \sqrt {225}  = 15\)cm.

Độ dài \(CE\) là:

15 – 12 = 3cm

Vậy \(CE = 3cm.\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Điểm \(O\) là gốc tọa độ nên \(O\left( {0;0} \right)\)

Từ điểm \(E\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại – 3  và cắt \(Oy\) tại 4 nên \(E\left( { - 3;4} \right)\).

Từ điểm \(F\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại 3 và cắt \(Oy\) tại – 5 nên \(E\left( {3; - 5} \right)\).

10 tháng 9 2023

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)

10 tháng 9 2023

a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)

b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Áp dụng định lí Pythagore trong tam giác AHD vuông tại H có: \(A{{\rm{D}}^2} = A{H^2} + H{{\rm{D}}^2}\) (1)

Áp dụng định lí Pythagore trong tam giác AHC vuông tại H có: \(A{C^2} = A{H^2} + H{C^2}\) (2)

Áp dụng định lí Pythagore trong tam giác AHE vuông tại H có: \(A{E^2} = A{H^2} + H{E^2}\) (3)

Vì HE > HC > HD suy ra \(H{E^2} > H{C^2} > H{{\rm{D}}^2}\)(4)

Từ (1), (2), (3), (4) suy ra: \(A{{\rm{E}}^2} > A{C^2} > A{{\rm{D}}^2} \Rightarrow A{\rm{E}} > AC > A{\rm{D}}\)

Vậy đoạn AE là lớn nhất, đoạn AD là nhỏ nhất.