K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2021

Câu 1 : 

a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)

\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)

\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)

Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)

tương tự 

16 tháng 5 2021

\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)

\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)

\(< =>95-24x+40=6-4x-15x+5\)

\(< =>-24x+135=-19x+11\)

\(< =>5x=135-11=124\)

\(< =>x=\frac{124}{5}\)

Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 so với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại được dãy [1; 8; 2; 9; 3; 10]Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6;...........]Vậy số thứ 2012 của dãy số trên là số...
Đọc tiếp

Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 so với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại được dãy [1; 8; 2; 9; 3; 10]

Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:

[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6;...........]

Vậy số thứ 2012 của dãy số trên là số nào?

Giải thích thêm:

Nếu số bắt đầu là [0] tạo đc 2 số nữa là [1] và [2] => ghép lại [0; 1; 2]

Tiếp với dãy số [0; 1; 2] lại tạo được 2 dãy nữa [1; 2; 3] và [2; 3; 4] => ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4]

Tiếp dãy [0; 1; 2; 1; 2; 3; 2; 3; 4] tạo đc 2 dãy [1; 2; 3; 2; 3; 4; 3; 4; 5] và [2; 3; 4; 3; 4; 5; 4; 5; 6]

=> Ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6]

.......................................... cứ như vậy tiếp ~~~~~~~~~~

2
1 tháng 9 2016

Giúp t bài với Giang ơi

1 tháng 9 2016

cần giúp đây -_-

15 tháng 2 2020
https://i.imgur.com/zKeoHqB.jpg
Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 só với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại thành dãy [1; 8; 2; 9; 3; 10]Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 6;...........]Vậy số thứ 2012 của dãy số trên là số...
Đọc tiếp

Terry mới nghĩ ra một cách mới để mở rộng dãy số. Để mở rộng dãy số như [1; 8] anh ấy tạo ra 2 dãy số [2; 9] và [3; 10] (mỗi dãy số được cộng thêm 1 só với dãy ban đầu). Sau đó, anh ta ghép 3 dãy số đó lại thành dãy [1; 8; 2; 9; 3; 10]

Nếu anh ấy bắt đầu dãy số bằng số [0] thì anh ấy tạo ra dãy:

[0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 6;...........]

Vậy số thứ 2012 của dãy số trên là số nào?

- Giải thích thêm:

Nếu số bắt đầu là [0] tạo đc 2 số nữa là [1] và [2] => ghép lại [0; 1; 2]

Tiếp với dãy số [0; 1; 2] lại tạo được 2 dãy nữa [1; 2; 3] và [2; 3; 4] => ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4]

Tiếp dãy [0; 1; 2; 1; 2; 3; 2; 3; 4] tạo đc 2 dãy [1; 2; 3; 2; 3; 4; 3; 4; 5] và [2; 3; 4; 3; 4; 5; 4; 5; 6]

=> Ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6]

.......................................... cứ như vậy tiếp ~~~~~~~~~~

 

P/S: Đáp án thầy mình cho là 9 còn cách làm mik không bik

7
3 tháng 9 2016

=267674646674676656565667666. giup minh nha

3 tháng 9 2016

2010 số hạng sẽ được chia vào 2010:3= 670 nhóm và 2 số hạng còn lại ở nhóm thứ 671. 

Do đó số thứ 2012 sẽ là số hạng thứ 2 của nhóm thứ 671.

Gọi các nhóm theo thứ tự là nhóm 1,2,3...,671

Ta có:

Nhóm 1 có số hạng thứ 2 là 1

Nhóm 2 có số hạng thứ 2 là số 2

Nhóm 3 có số hạng thứ 2 là số 3

....

Nhóm 671 có số hạng thứ 2 là số 671

Vậy số cần tìm là số 671

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

Nhiều vậy ai làm hết được :P

1)  \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)

\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)

\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)

\(\Leftrightarrow12x-32=12x-3\)(vô lí)

Vậy pt vô nghiệm


P/s: mấy câu sau tương tự thôi mà :)))

nhăm nhe 1 câu thôi 

\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)

\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)

\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)

\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)

\(\Leftrightarrow-60+25x=36x-12\)

\(\Leftrightarrow26x-36x=-12+60\)

\(\Leftrightarrow-10x=48\)

\(\Leftrightarrow x=-4,8\)

Ý bạn là mỗi phép tính phải thêm dấu và ....để kết quả bằng 6 phải không ạ

ví dụ:(1+1+1)!=6

1 tháng 9 2016

- Giải thích thêm:

Nếu số bắt đầu là [0] tạo đc 2 số nữa là [1] và [2] => ghép lại [0; 1; 2]

Tiếp với dãy số [0; 1; 2] lại tạo được 2 dãy nữa [1; 2; 3] và [2; 3; 4] => ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4]

Tiếp dãy [0; 1; 2; 1; 2; 3; 2; 3; 4] tạo đc 2 dãy [1; 2; 3; 2; 3; 4; 3; 4; 5] và [2; 3; 4; 3; 4; 5; 4; 5; 6]

=> Ghép lại [0; 1; 2; 1; 2; 3; 2; 3; 4; 1; 2; 3; 2; 3; 4; 3; 4; 5; 2; 3; 4; 3; 4; 5; 4; 5; 6]

.......................................... cứ như vậy tiếp ~~~~~~~~~~~~