Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>Tập hợp A có 1 phần tử
=>Tập hợp B có 2 phần tử
=>Tập hợp C có 100 phần tử
=>Tập hợp N có vô số phần tử.
Phần tử của D là 10
Phần tử của E là bút, thước
H = { 0,1,2,3,4,5,6,7,8,9,10 }
Phần tử của H là 0 -> 10
X + 5 = 2
Ko có số tự nhiên nào có thể + 5 bằng 2 được.
Đây là toán lớp 6
a, Số cách chọn chữ số hàng trăm: 9 (trừ số 0)
Số cách chọn chữ số hàng chục: 9 cách chọn (trừ chữ số hàng trăm)
Số cách chọn chữ số hàng đơn vị: 8 cách chọn (trừ chữ số hàng trăm, hàng chục)
Số phần tử của tập hợp C: 9 x 9 x 8 = 648 (phần tử)
b, BCNN(3;5)= 3 x 5 = 15
Từ 1 đến 15 có số lượng số chỉ chia hết cho 3 hoặc chỉ chia hết cho 5 là: 6 số (Các số: 3;6;9;12;5;10)
D là tập hợp các số tự nhiên không quá 1000 chỉ chia hết cho 3 hoặc chia hết cho 5
Số tự nhiên lớn nhất chia hết cho cả 3 và 5 mà không vượt quá 1000 là 990
Từ 990 đến 1000 có số lượng số chỉ chia hết cho 3 hoặc cho 5 là: 5 số (993; 995; 996; 999; 1000)
Số lượng phần tử của D:
(990 - 0): 15 x 6 + 5= 401 (phần tử)
Đáp số: 401 phần tử
X={9;10;11;12;...;78;79;80}
Phần tử nhỏ nhất: 9
Phần tử lớn nhất: 80
Khoảng cách giữa 2 phần tử liên tiếp: 10-9=1
b, Số lượng phần tử của tập hợp X:
(80-9):1 +1= 72 (phần tử)
\(Ax=Bx\Rightarrow Ax-Bx=0\Rightarrow x\left(A-B\right)=0\Rightarrow x=0\) \(\rightarrow câu.A\)
A.(0)
B.(1)
C(0,1,5)
D.(0,1,5,6)
chọn đáp án thôi là đc ak
{x ∈Z | - 5 ≤ x ≤ 5 } ⇒ x ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
Phương trình (1) có nghiệm là x = 3 và x = 5.
Phương trình (2) có nghiệm là x = 0.
Phương trình (3) không có nghiệm.
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)
\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)
\(c,\) Để P nguyên
\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)
=> \(x-3\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
\(=>x=\left\{2;4;5;1;7;-1\right\}\)