Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có: 2011.2013= 2011.(2012+1)
= 2011.2012+ 2011
Ta có: 2012.2012 = (2011+1).2012
= 2011.2012+2012
Do: 2011.2012=2011.2012 mà 2011 < 2012
=> 2011.2012+2011 < 2011.2012+2012
=> 2011.2013 < 2012.2012
Duyệt đi, chúc bạn học giỏi
VÌ A = 1/2010 > 1/2011 > 1/2012 (1)
B = 1/2009 <1/1007 (2)
TỪ (1) VÀ (2) => 1/2010 < 1/1007
VẬY A < B
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
A = 1-1/2011+1-1/2012 = 2-(1/2011+1/2012) > 1 ( vì 1/2011+1/2012 < 1 )
B = 4021/4023 = 1-2/4023 < 1
=> A > B
k mk nha