Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt: \(S=137+\overline{3x}=137+30+x=12.13+\left(11+x\right)\)
Để: \(S\)chia hết cho \(13\Leftrightarrow11+x\) chia hết cho \(13\)
\(\Rightarrow x=2\)
b, Đặt: \(Q=\overline{137x137x}=10^6.13+\overline{7x}.10^4+13.10^2+\overline{7x}\)
\(=13\left(10^6+10^2\right)+\overline{7x}.10001\)
Lại có: \(10001\)không chia hết cho \(13\)
Để: \(Q\) chia hết cho \(13\Leftrightarrow\overline{7x}\) chia hết cho \(13\)
\(\Rightarrow x=8\)
Để \(\overline{87ab}⋮9\)thì \(8+7+a+b⋮9\)
\(\Leftrightarrow15+a+b⋮9\)
mà a, b là các chữ số \(\Rightarrow0\le a+b\le18\)\(\Rightarrow a+b\in\left\{3;12\right\}\)
Vì a, b là các chữ số \(\Rightarrow a+b\ge a-b\)\(\Rightarrow\)\(a+b=12\)thoả mãn
mà \(a-b=4\)\(\Rightarrow\left(a+b\right)+\left(a-b\right)=12+4\)
\(\Leftrightarrow2a=16\)\(\Leftrightarrow a=8\)\(\Rightarrow a=8-4=4\)
Vậy \(a=8\)và \(b=4\)
Do a, b là các chữ số nên a, b thuộc N, \(0\le a\le9;0\le b\le9\Rightarrow0\le a+b\le18\)(1)
87ab chia hết cho 9 nên 8+7+a+b chia hết cho 9 => 15+a+b chia hết cho 9 => 9+6+a+b chia hết cho 9 => 6+a+b chia hết cho 9(2)
Từ (1) và (2) => \(\left(a+b\right)\in\left\{3;12\right\}\)(3)
a-b=4 (4)
Từ (3) và (4) ta xét hai trường hợp:
Trường hợp 1:\(\hept{\begin{cases}a+b=3\\a-b=4\end{cases}\Leftrightarrow2a=7\Leftrightarrow a=\frac{7}{2}}\)(loại vì a thuộc N)
Trường hợp 2: \(\hept{\begin{cases}a+b=12\\a-b=4\end{cases}\Leftrightarrow2a=16\Leftrightarrow a=8\Rightarrow b=4}\)
vậy \(\left(a,b\right)\in\left\{\left(8,4\right);\left(4,8\right)\right\}\)
\(\overline{1x}+\overline{2x3}=279\)
\(10+x+200+10x+3=279\)
\(11x+213=279\)
\(11x=279-213\)
\(11x=66\)
\(x=\frac{66}{11}\)
\(x=6\)( thỏa mãn điều kiện )
Vậy \(x=6\)
Tham khảo nhé~
1x + 2x3 = 279
=> 10 + x + 200 + 10x + 3 = 279
213 + 11x = 279
11x = 66
x = 6
Vậy,.........
Ta có P=10a+b/a+b
=9a+a+b/a+b
=1+9a/a+b
=1+9/a+b/a
=1+9/1+b/a
Để P có giá trị nhỏ nhất=>9/1+b/a cũng phải đạt giá trị nhỏ nhất=>1+b/a đạt giá trị lớn nhất<=>b/a có giá trị lớn nhất=>b lớn nhất ; a nhỏ nhất
Mà a và b là số có 1 chữ số và a khác 0=>a=1 ; b=9=>ab=19
Khi đó P=19/1+9=1,9
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
- Bạn Trần Hoàng Hải đó có làm đúng không vậy
- Người ta kêu tìm \(\overline{ab}\) kia mà
- Tự dưng đi tìm \(P\) làm gì vậy
- Kết quả là \(\overline{ab}=19\) đúng không
- Nếu đúng thì k nhé, nếu sai thì thôi vậy!
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
A > B
vì a được đứng ở phần nguyên còn b ở phần thập phân
ủng hộ mk nha