Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta sắp xếp theo thứ tự tăng dần như sau:
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b) Ta sắp xếp theo thứ tự tăng dần như sau:
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
a. \(3\sqrt{5}=\sqrt{45}\) ; \(2\sqrt{6}=\sqrt{24}\) ; \(4\sqrt{2}=\sqrt{32}\)
Vì 24 < 29 < 32 < 45 nên \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
Hay \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b. \(6\sqrt{2}=\sqrt{72}\) ; \(3\sqrt{7}=\sqrt{63}\) ; \(2\sqrt{14}=\sqrt{56}\)
Vì 38 < 56 < 63 < 72 nên \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Hay \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
a) \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b) \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)
a)
\(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{16.2}=\sqrt{32}\)
Do 24 < 29 < 32 < 45 => \(\sqrt{24}< \sqrt{29}< \sqrt{32}< \sqrt{45}\)
=> \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b)
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\\ 3\sqrt{8}=\sqrt{9.8}=\sqrt{72}\\ 2\sqrt{15}=\sqrt{4.15}=\sqrt{60}\)
Do 39 < 50 < 60 < 72 nên \(\sqrt{39}< \sqrt{50}< \sqrt{60}< \sqrt{72}\)
=> \(\sqrt{39}< 5\sqrt{2}< 2\sqrt{15}< 3\sqrt{8}\)
a: 3căn5=căn 45
2căn 6=căn 24
căn 29=căn 29
4căn2=căn 32
=>2căn6<căn29<4căn2<3căn5
b: 5căn 2=căn 50
căn 39=căn 39
3căn 8=căn 72
2căn 15=căn60
=>căn 39<5căn2<2căn15<3căn8
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
bài 2 nhé, bài 1 không biết làm.
cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))
+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương
- nhắm đến hằng đẳng thức số 1 và số 2.
+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối
* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)
=> ta sẽ phân tích số hạng chứa căn để tìm A và B
+ nhẩm bằng máy tính, tìm 2 số hạng:
thử lần lượt các trường hợp, lấy vd là câu c)
\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)
\(\Rightarrow AB=6\sqrt{5}\)
- đầu tiên xét đơn giản với B là căn 5 => A= 6
\(A^2+B^2=36+5=41\) (41 khác 29 => loại)
- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)
tương ứng A= 2; B = 3 căn 5
\(A^2+B^2=4+45=49\) (loại)
- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)
Tương ứng A= 3 ; B= 2 căn 5
\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)
Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)
+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:
\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)
sau đó bạn làm tương tự như 2 câu mẫu bên dưới
* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối
a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)
a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)
=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)
=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)
=-7
b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)
So sánh:
1) \(2\sqrt{27}\) và \(\sqrt{147}\)
+ \(2\sqrt{27}\) = \(6\sqrt{3}\)
+ \(\sqrt{147}\) = \(7\sqrt{3}\)
⇒ \(6\sqrt{3}\) < \(7\sqrt{3}\)
Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)
2) \(2\sqrt{15}\) và \(\sqrt{59}\)
+ \(2\sqrt{15}\) = \(\sqrt{60}\)
⇒ \(\sqrt{60}\) > \(\sqrt{59}\)
Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)
3) \(2\sqrt{2}-1\) và 2
\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)
So sánh: 3 và \(2\sqrt{2}\)
+ 3 = \(\sqrt{9}\)
+ \(2\sqrt{2}=\sqrt{8}\)
⇒ \(\sqrt{8}\) < \(\sqrt{9}\)
⇒ \(\sqrt{8}\) -1 < \(\sqrt{9}\) -1
⇒ \(2\sqrt{2}\) - 1 < 3 - 1
Vậy: \(2\sqrt{2}-1< 2\)
4) \(\frac{\sqrt{3}}{2}\) và 1
+ 1 = \(\frac{2}{2}\)
⇒ \(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)
Vậy: \(\frac{\sqrt{3}}{2}\) < 1
5) \(\frac{-\sqrt{10}}{2}\) và \(-2\sqrt{5}\)
+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)
⇒ \(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)
Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)
7.
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+3+2\sqrt{4.3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{(\sqrt{4}+\sqrt{3})^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(2+\sqrt{3})}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25+3-2.5\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5(5-\sqrt{3})}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)
5.
\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)
6.
\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)
\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)
\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)
a ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(2\sqrt{6};\sqrt{29};4\sqrt{2};3\sqrt{5}\)
b ) Dãy trên nếu xếp theo thứ tự tăng dần :
\(\sqrt{38};2\sqrt{14};3\sqrt{7};6\sqrt{2}\)
Làm thế này có đúng ko?
Giải:
a, \(3\sqrt{5}=\sqrt{3^2.5}==\sqrt{9.5}=\sqrt{45}\)
\(2\sqrt{6}=\sqrt{2^2.6}=\sqrt{4.6}=\sqrt{24}\)
\(4\sqrt{2}=\sqrt{4^2.2}=\sqrt{16.2}=\sqrt{32}\)
Vì: \(\sqrt{24}< \sqrt{23}< \sqrt{32}< \sqrt{45}\)
Nên ta sắp xếp được: \(2\sqrt{6}< \sqrt{29}< 4\sqrt{2}< 3\sqrt{5}\)
b, \(6\sqrt{2}=\sqrt{6^2.2}=\sqrt{36.2}=\sqrt{72}\)
\(3\sqrt{7}=\sqrt{3^2.7}=\sqrt{9.7}=63\)
\(2\sqrt{14}=\sqrt{2^2.14}=\sqrt{4.14}=\sqrt{56}\)
Vì: \(\sqrt{38}< \sqrt{56}< \sqrt{63}< \sqrt{72}\)
Nên ta sắp xếp được: \(\sqrt{38}< 2\sqrt{14}< 3\sqrt{7}< 6\sqrt{2}\)