Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: giải phương trình
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận

Đây là KQ của mk k biết coó đúng k
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài, ta có:
\(\overline{ab}+63=\overline{ba}\)và \(a+b=9\)
Từ đó, ta có HPT:
\(\hept{\begin{cases}a+b=9\\10a+b+63=10b+a\end{cases}\Rightarrow\hept{\begin{cases}a+b=9\\9a+63=9b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=9\\a+7=b\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=8\end{cases}}}\)
Vậy số cần tìm là 18
Cho một số có hai chữ số, biết rằng tổng các chữ số của nó bằng 7 và khi đảo thứ tự hai chữ số của nó thì được số mới hơn số ban đầu 27 đơn vị. Khi đó chữ số hàng chục là bao nhiêu

Bài 5: Gọi thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là x(ngày) và y(ngày)
(Điều kiện: x>0; y>0)
Trong 1 ngày, người thứ nhất làm được: \(\frac{1}{x}\) (công việc)
Trong 1 ngày, người thứ hai làm được: \(\frac{1}{y}\) (công việc)
Trong 1 ngày, hai người làm được: \(\frac16\) (công việc)
Do đó, ta có: \(\frac{1}{x}+\frac{1}{y}=\frac16\left(1\right)\)
Trong 3 ngày, người thứ nhất làm được: \(\frac{3}{x}\) (công việc)
Trong 3+4=7 ngày, người thứ hai làm được: \(\frac{7}{y}\) (công việc)
Sau khi làm chung trong 3 ngày thì người thứ nhất đi làm việc khác, người thứ hai hoàn thành phần còn lại trong 4 ngày nên ta có: \(\frac{3}{x}+\frac{7}{y}=1\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac16\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\Rightarrow\begin{cases}\frac{3}{x}+\frac{3}{y}=\frac36=\frac12\\ \frac{3}{x}+\frac{7}{y}=1\end{cases}\)
=>\(\begin{cases}\frac{3}{x}+\frac{7}{y}-\frac{3}{x}-\frac{3}{y}=1-\frac12=\frac12\\ \frac{1}{x}+\frac{1}{y}=\frac16\end{cases}\Rightarrow\begin{cases}\frac{4}{y}=\frac12\\ \frac{1}{x}=\frac16-\frac{1}{y}\end{cases}\)
=>\(\begin{cases}y=8\\ \frac{1}{x}=\frac16-\frac18=\frac{1}{24}\end{cases}\Rightarrow\begin{cases}y=8\\ x=24\end{cases}\) (nhận)
Vậy: thời gian làm riêng của người thứ nhất và người thứ hai lần lượt là 24(ngày) và 8(ngày)
Bài 3:
Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là x(sản phẩm) và y(sản phẩm)
(Điều kiện: x,y∈N*)
Tổng số sản phẩm hai tổ làm được trong tháng thứ nhất là 500 sản phẩm nên x+y=500(3)
Số sản phẩm tổ 1 làm được trong tháng thứ hai là: \(x\left(1+10\%\right)=1,1x\) (sản phẩm)
Số sản phẩm tổ 2 làm được trong tháng thứ hai là:
\(y\left(1+15\%\right)=1,15y\) (sản phẩm)
Tổng số sản phẩm hai tổ làm được trong tháng thứ hai là 564 sản phẩm nên 1,1x+1,15y=564(4)
Từ (3),(4) ta có hệ phương trình:
\(\begin{cases}x+y=500\\ 1,1x+1,15y=564\end{cases}\Rightarrow\begin{cases}1,1x+1,1y=550\\ 1,1x+1,15y=564\end{cases}\)
=>\(\begin{cases}1,1x+1,15y-1,1x-1,1y=564-550=14\\ x+y=500\end{cases}\)
=>\(\begin{cases}0,05y=14\\ x+y=500\end{cases}\Rightarrow\begin{cases}y=280\\ x=500-280=220\end{cases}\) (nhận)
Vậy: số sản phẩm tổ 1 và tổ 2 làm được trong tháng thứ nhất lần lượt là 220(sản phẩm) và 280(sản phẩm)

Gọi số tờ tiền loại 200 ngàn đồng là x tờ (x>0)
Số tờ tiền loại 100 ngàn đồng là y tờ (y>0)
Do ba Lan đến được 36 tờ nên: \(x+y=36\)
Do tổng số tiền rút là 6 triệu đồng (\(=6000\) ngàn đồng) nên:
\(200x+100y=6000\Leftrightarrow2x+y=60\)
Ta được hệ: \(\left\{{}\begin{matrix}x+y=36\\2x+y=60\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
Bước 1: Lập phương trình
- Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số
- Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết
- Lập phương trình biểu thị mối quan hệ giữa các đại lượng
Bước 2: giải phương trình
Bước 3: Trả lời: Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận